1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/*
* MVEBU Core divider clock
*
* Copyright (C) 2013 Marvell
*
* Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/clk-provider.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "common.h"
#define CORE_CLK_DIV_RATIO_MASK 0xff
/*
* This structure describes the hardware details (bit offset and mask)
* to configure one particular core divider clock. Those hardware
* details may differ from one SoC to another. This structure is
* therefore typically instantiated statically to describe the
* hardware details.
*/
struct clk_corediv_desc {
unsigned int mask;
unsigned int offset;
unsigned int fieldbit;
};
/*
* This structure describes the hardware details to configure the core
* divider clocks on a given SoC. Amongst others, it points to the
* array of core divider clock descriptors for this SoC, as well as
* the corresponding operations to manipulate them.
*/
struct clk_corediv_soc_desc {
const struct clk_corediv_desc *descs;
unsigned int ndescs;
const struct clk_ops ops;
u32 ratio_reload;
u32 enable_bit_offset;
u32 ratio_offset;
};
/*
* This structure represents one core divider clock for the clock
* framework, and is dynamically allocated for each core divider clock
* existing in the current SoC.
*/
struct clk_corediv {
struct clk_hw hw;
void __iomem *reg;
const struct clk_corediv_desc *desc;
const struct clk_corediv_soc_desc *soc_desc;
spinlock_t lock;
};
static struct clk_onecell_data clk_data;
/*
* Description of the core divider clocks available. For now, we
* support only NAND, and it is available at the same register
* locations regardless of the SoC.
*/
static const struct clk_corediv_desc mvebu_corediv_desc[] = {
{ .mask = 0x3f, .offset = 8, .fieldbit = 1 }, /* NAND clock */
};
#define to_corediv_clk(p) container_of(p, struct clk_corediv, hw)
static int clk_corediv_is_enabled(struct clk_hw *hwclk)
{
struct clk_corediv *corediv = to_corediv_clk(hwclk);
const struct clk_corediv_soc_desc *soc_desc = corediv->soc_desc;
const struct clk_corediv_desc *desc = corediv->desc;
u32 enable_mask = BIT(desc->fieldbit) << soc_desc->enable_bit_offset;
return !!(readl(corediv->reg) & enable_mask);
}
static int clk_corediv_enable(struct clk_hw *hwclk)
{
struct clk_corediv *corediv = to_corediv_clk(hwclk);
const struct clk_corediv_soc_desc *soc_desc = corediv->soc_desc;
const struct clk_corediv_desc *desc = corediv->desc;
unsigned long flags = 0;
u32 reg;
spin_lock_irqsave(&corediv->lock, flags);
reg = readl(corediv->reg);
reg |= (BIT(desc->fieldbit) << soc_desc->enable_bit_offset);
writel(reg, corediv->reg);
spin_unlock_irqrestore(&corediv->lock, flags);
return 0;
}
static void clk_corediv_disable(struct clk_hw *hwclk)
{
struct clk_corediv *corediv = to_corediv_clk(hwclk);
const struct clk_corediv_soc_desc *soc_desc = corediv->soc_desc;
const struct clk_corediv_desc *desc = corediv->desc;
unsigned long flags = 0;
u32 reg;
spin_lock_irqsave(&corediv->lock, flags);
reg = readl(corediv->reg);
reg &= ~(BIT(desc->fieldbit) << soc_desc->enable_bit_offset);
writel(reg, corediv->reg);
spin_unlock_irqrestore(&corediv->lock, flags);
}
static unsigned long clk_corediv_recalc_rate(struct clk_hw *hwclk,
unsigned long parent_rate)
{
struct clk_corediv *corediv = to_corediv_clk(hwclk);
const struct clk_corediv_soc_desc *soc_desc = corediv->soc_desc;
const struct clk_corediv_desc *desc = corediv->desc;
u32 reg, div;
reg = readl(corediv->reg + soc_desc->ratio_offset);
div = (reg >> desc->offset) & desc->mask;
return parent_rate / div;
}
static long clk_corediv_round_rate(struct clk_hw *hwclk, unsigned long rate,
unsigned long *parent_rate)
{
/* Valid ratio are 1:4, 1:5, 1:6 and 1:8 */
u32 div;
div = *parent_rate / rate;
if (div < 4)
div = 4;
else if (div > 6)
div = 8;
return *parent_rate / div;
}
static int clk_corediv_set_rate(struct clk_hw *hwclk, unsigned long rate,
unsigned long parent_rate)
{
struct clk_corediv *corediv = to_corediv_clk(hwclk);
const struct clk_corediv_soc_desc *soc_desc = corediv->soc_desc;
const struct clk_corediv_desc *desc = corediv->desc;
unsigned long flags = 0;
u32 reg, div;
div = parent_rate / rate;
spin_lock_irqsave(&corediv->lock, flags);
/* Write new divider to the divider ratio register */
reg = readl(corediv->reg + soc_desc->ratio_offset);
reg &= ~(desc->mask << desc->offset);
reg |= (div & desc->mask) << desc->offset;
writel(reg, corediv->reg + soc_desc->ratio_offset);
/* Set reload-force for this clock */
reg = readl(corediv->reg) | BIT(desc->fieldbit);
writel(reg, corediv->reg);
/* Now trigger the clock update */
reg = readl(corediv->reg) | soc_desc->ratio_reload;
writel(reg, corediv->reg);
/*
* Wait for clocks to settle down, and then clear all the
* ratios request and the reload request.
*/
udelay(1000);
reg &= ~(CORE_CLK_DIV_RATIO_MASK | soc_desc->ratio_reload);
writel(reg, corediv->reg);
udelay(1000);
spin_unlock_irqrestore(&corediv->lock, flags);
return 0;
}
static const struct clk_corediv_soc_desc armada370_corediv_soc = {
.descs = mvebu_corediv_desc,
.ndescs = ARRAY_SIZE(mvebu_corediv_desc),
.ops = {
.enable = clk_corediv_enable,
.disable = clk_corediv_disable,
.is_enabled = clk_corediv_is_enabled,
.recalc_rate = clk_corediv_recalc_rate,
.round_rate = clk_corediv_round_rate,
.set_rate = clk_corediv_set_rate,
},
.ratio_reload = BIT(8),
.enable_bit_offset = 24,
.ratio_offset = 0x8,
};
static void __init
mvebu_corediv_clk_init(struct device_node *node,
const struct clk_corediv_soc_desc *soc_desc)
{
struct clk_init_data init;
struct clk_corediv *corediv;
struct clk **clks;
void __iomem *base;
const char *parent_name;
const char *clk_name;
int i;
base = of_iomap(node, 0);
if (WARN_ON(!base))
return;
parent_name = of_clk_get_parent_name(node, 0);
clk_data.clk_num = soc_desc->ndescs;
/* clks holds the clock array */
clks = kcalloc(clk_data.clk_num, sizeof(struct clk *),
GFP_KERNEL);
if (WARN_ON(!clks))
goto err_unmap;
/* corediv holds the clock specific array */
corediv = kcalloc(clk_data.clk_num, sizeof(struct clk_corediv),
GFP_KERNEL);
if (WARN_ON(!corediv))
goto err_free_clks;
spin_lock_init(&corediv->lock);
for (i = 0; i < clk_data.clk_num; i++) {
of_property_read_string_index(node, "clock-output-names",
i, &clk_name);
init.num_parents = 1;
init.parent_names = &parent_name;
init.name = clk_name;
init.ops = &soc_desc->ops;
init.flags = 0;
corediv[i].soc_desc = soc_desc;
corediv[i].desc = soc_desc->descs + i;
corediv[i].reg = base;
corediv[i].hw.init = &init;
clks[i] = clk_register(NULL, &corediv[i].hw);
WARN_ON(IS_ERR(clks[i]));
}
clk_data.clks = clks;
of_clk_add_provider(node, of_clk_src_onecell_get, &clk_data);
return;
err_free_clks:
kfree(clks);
err_unmap:
iounmap(base);
}
static void __init armada370_corediv_clk_init(struct device_node *node)
{
return mvebu_corediv_clk_init(node, &armada370_corediv_soc);
}
CLK_OF_DECLARE(armada370_corediv_clk, "marvell,armada-370-corediv-clock",
armada370_corediv_clk_init);
|