1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018-2019 SiFive, Inc.
* Wesley Terpstra
* Paul Walmsley
*
* This library supports configuration parsing and reprogramming of
* the CLN28HPC variant of the Analog Bits Wide Range PLL. The
* intention is for this library to be reusable for any device that
* integrates this PLL; thus the register structure and programming
* details are expected to be provided by a separate IP block driver.
*
* The bulk of this code is primarily useful for clock configurations
* that must operate at arbitrary rates, as opposed to clock configurations
* that are restricted by software or manufacturer guidance to a small,
* pre-determined set of performance points.
*
* References:
* - Analog Bits "Wide Range PLL Datasheet", version 2015.10.01
* - SiFive FU540-C000 Manual v1p0, Chapter 7 "Clocking and Reset"
* https://static.dev.sifive.com/FU540-C000-v1.0.pdf
*/
#include <linux/bug.h>
#include <linux/err.h>
#include <linux/log2.h>
#include <linux/math64.h>
#include <linux/clk/analogbits-wrpll-cln28hpc.h>
/* MIN_INPUT_FREQ: minimum input clock frequency, in Hz (Fref_min) */
#define MIN_INPUT_FREQ 7000000
/* MAX_INPUT_FREQ: maximum input clock frequency, in Hz (Fref_max) */
#define MAX_INPUT_FREQ 600000000
/* MIN_POST_DIVIDE_REF_FREQ: minimum post-divider reference frequency, in Hz */
#define MIN_POST_DIVR_FREQ 7000000
/* MAX_POST_DIVIDE_REF_FREQ: maximum post-divider reference frequency, in Hz */
#define MAX_POST_DIVR_FREQ 200000000
/* MIN_VCO_FREQ: minimum VCO frequency, in Hz (Fvco_min) */
#define MIN_VCO_FREQ 2400000000UL
/* MAX_VCO_FREQ: maximum VCO frequency, in Hz (Fvco_max) */
#define MAX_VCO_FREQ 4800000000ULL
/* MAX_DIVQ_DIVISOR: maximum output divisor. Selected by DIVQ = 6 */
#define MAX_DIVQ_DIVISOR 64
/* MAX_DIVR_DIVISOR: maximum reference divisor. Selected by DIVR = 63 */
#define MAX_DIVR_DIVISOR 64
/* MAX_LOCK_US: maximum PLL lock time, in microseconds (tLOCK_max) */
#define MAX_LOCK_US 70
/*
* ROUND_SHIFT: number of bits to shift to avoid precision loss in the rounding
* algorithm
*/
#define ROUND_SHIFT 20
/*
* Private functions
*/
/**
* __wrpll_calc_filter_range() - determine PLL loop filter bandwidth
* @post_divr_freq: input clock rate after the R divider
*
* Select the value to be presented to the PLL RANGE input signals, based
* on the input clock frequency after the post-R-divider @post_divr_freq.
* This code follows the recommendations in the PLL datasheet for filter
* range selection.
*
* Return: The RANGE value to be presented to the PLL configuration inputs,
* or a negative return code upon error.
*/
static int __wrpll_calc_filter_range(unsigned long post_divr_freq)
{
if (post_divr_freq < MIN_POST_DIVR_FREQ ||
post_divr_freq > MAX_POST_DIVR_FREQ) {
WARN(1, "%s: post-divider reference freq out of range: %lu",
__func__, post_divr_freq);
return -ERANGE;
}
switch (post_divr_freq) {
case 0 ... 10999999:
return 1;
case 11000000 ... 17999999:
return 2;
case 18000000 ... 29999999:
return 3;
case 30000000 ... 49999999:
return 4;
case 50000000 ... 79999999:
return 5;
case 80000000 ... 129999999:
return 6;
}
return 7;
}
/**
* __wrpll_calc_fbdiv() - return feedback fixed divide value
* @c: ptr to a struct wrpll_cfg record to read from
*
* The internal feedback path includes a fixed by-two divider; the
* external feedback path does not. Return the appropriate divider
* value (2 or 1) depending on whether internal or external feedback
* is enabled. This code doesn't test for invalid configurations
* (e.g. both or neither of WRPLL_FLAGS_*_FEEDBACK are set); it relies
* on the caller to do so.
*
* Context: Any context. Caller must protect the memory pointed to by
* @c from simultaneous modification.
*
* Return: 2 if internal feedback is enabled or 1 if external feedback
* is enabled.
*/
static u8 __wrpll_calc_fbdiv(const struct wrpll_cfg *c)
{
return (c->flags & WRPLL_FLAGS_INT_FEEDBACK_MASK) ? 2 : 1;
}
/**
* __wrpll_calc_divq() - determine DIVQ based on target PLL output clock rate
* @target_rate: target PLL output clock rate
* @vco_rate: pointer to a u64 to store the computed VCO rate into
*
* Determine a reasonable value for the PLL Q post-divider, based on the
* target output rate @target_rate for the PLL. Along with returning the
* computed Q divider value as the return value, this function stores the
* desired target VCO rate into the variable pointed to by @vco_rate.
*
* Context: Any context. Caller must protect the memory pointed to by
* @vco_rate from simultaneous access or modification.
*
* Return: a positive integer DIVQ value to be programmed into the hardware
* upon success, or 0 upon error (since 0 is an invalid DIVQ value)
*/
static u8 __wrpll_calc_divq(u32 target_rate, u64 *vco_rate)
{
u64 s;
u8 divq = 0;
if (!vco_rate) {
WARN_ON(1);
goto wcd_out;
}
s = div_u64(MAX_VCO_FREQ, target_rate);
if (s <= 1) {
divq = 1;
*vco_rate = MAX_VCO_FREQ;
} else if (s > MAX_DIVQ_DIVISOR) {
divq = ilog2(MAX_DIVQ_DIVISOR);
*vco_rate = MIN_VCO_FREQ;
} else {
divq = ilog2(s);
*vco_rate = (u64)target_rate << divq;
}
wcd_out:
return divq;
}
/**
* __wrpll_update_parent_rate() - update PLL data when parent rate changes
* @c: ptr to a struct wrpll_cfg record to write PLL data to
* @parent_rate: PLL input refclk rate (pre-R-divider)
*
* Pre-compute some data used by the PLL configuration algorithm when
* the PLL's reference clock rate changes. The intention is to avoid
* computation when the parent rate remains constant - expected to be
* the common case.
*
* Returns: 0 upon success or -ERANGE if the reference clock rate is
* out of range.
*/
static int __wrpll_update_parent_rate(struct wrpll_cfg *c,
unsigned long parent_rate)
{
u8 max_r_for_parent;
if (parent_rate > MAX_INPUT_FREQ || parent_rate < MIN_POST_DIVR_FREQ)
return -ERANGE;
c->parent_rate = parent_rate;
max_r_for_parent = div_u64(parent_rate, MIN_POST_DIVR_FREQ);
c->max_r = min_t(u8, MAX_DIVR_DIVISOR, max_r_for_parent);
c->init_r = DIV_ROUND_UP_ULL(parent_rate, MAX_POST_DIVR_FREQ);
return 0;
}
/**
* wrpll_configure() - compute PLL configuration for a target rate
* @c: ptr to a struct wrpll_cfg record to write into
* @target_rate: target PLL output clock rate (post-Q-divider)
* @parent_rate: PLL input refclk rate (pre-R-divider)
*
* Compute the appropriate PLL signal configuration values and store
* in PLL context @c. PLL reprogramming is not glitchless, so the
* caller should switch any downstream logic to a different clock
* source or clock-gate it before presenting these values to the PLL
* configuration signals.
*
* The caller must pass this function a pre-initialized struct
* wrpll_cfg record: either initialized to zero (with the
* exception of the .name and .flags fields) or read from the PLL.
*
* Context: Any context. Caller must protect the memory pointed to by @c
* from simultaneous access or modification.
*
* Return: 0 upon success; anything else upon failure.
*/
int wrpll_configure_for_rate(struct wrpll_cfg *c, u32 target_rate,
unsigned long parent_rate)
{
unsigned long ratio;
u64 target_vco_rate, delta, best_delta, f_pre_div, vco, vco_pre;
u32 best_f, f, post_divr_freq;
u8 fbdiv, divq, best_r, r;
int range;
if (c->flags == 0) {
WARN(1, "%s called with uninitialized PLL config", __func__);
return -EINVAL;
}
/* Initialize rounding data if it hasn't been initialized already */
if (parent_rate != c->parent_rate) {
if (__wrpll_update_parent_rate(c, parent_rate)) {
pr_err("%s: PLL input rate is out of range\n",
__func__);
return -ERANGE;
}
}
c->flags &= ~WRPLL_FLAGS_RESET_MASK;
/* Put the PLL into bypass if the user requests the parent clock rate */
if (target_rate == parent_rate) {
c->flags |= WRPLL_FLAGS_BYPASS_MASK;
return 0;
}
c->flags &= ~WRPLL_FLAGS_BYPASS_MASK;
/* Calculate the Q shift and target VCO rate */
divq = __wrpll_calc_divq(target_rate, &target_vco_rate);
if (!divq)
return -1;
c->divq = divq;
/* Precalculate the pre-Q divider target ratio */
ratio = div64_u64((target_vco_rate << ROUND_SHIFT), parent_rate);
fbdiv = __wrpll_calc_fbdiv(c);
best_r = 0;
best_f = 0;
best_delta = MAX_VCO_FREQ;
/*
* Consider all values for R which land within
* [MIN_POST_DIVR_FREQ, MAX_POST_DIVR_FREQ]; prefer smaller R
*/
for (r = c->init_r; r <= c->max_r; ++r) {
f_pre_div = ratio * r;
f = (f_pre_div + (1 << ROUND_SHIFT)) >> ROUND_SHIFT;
f >>= (fbdiv - 1);
post_divr_freq = div_u64(parent_rate, r);
vco_pre = fbdiv * post_divr_freq;
vco = vco_pre * f;
/* Ensure rounding didn't take us out of range */
if (vco > target_vco_rate) {
--f;
vco = vco_pre * f;
} else if (vco < MIN_VCO_FREQ) {
++f;
vco = vco_pre * f;
}
delta = abs(target_rate - vco);
if (delta < best_delta) {
best_delta = delta;
best_r = r;
best_f = f;
}
}
c->divr = best_r - 1;
c->divf = best_f - 1;
post_divr_freq = div_u64(parent_rate, best_r);
/* Pick the best PLL jitter filter */
range = __wrpll_calc_filter_range(post_divr_freq);
if (range < 0)
return range;
c->range = range;
return 0;
}
/**
* wrpll_calc_output_rate() - calculate the PLL's target output rate
* @c: ptr to a struct wrpll_cfg record to read from
* @parent_rate: PLL refclk rate
*
* Given a pointer to the PLL's current input configuration @c and the
* PLL's input reference clock rate @parent_rate (before the R
* pre-divider), calculate the PLL's output clock rate (after the Q
* post-divider).
*
* Context: Any context. Caller must protect the memory pointed to by @c
* from simultaneous modification.
*
* Return: the PLL's output clock rate, in Hz. The return value from
* this function is intended to be convenient to pass directly
* to the Linux clock framework; thus there is no explicit
* error return value.
*/
unsigned long wrpll_calc_output_rate(const struct wrpll_cfg *c,
unsigned long parent_rate)
{
u8 fbdiv;
u64 n;
if (c->flags & WRPLL_FLAGS_EXT_FEEDBACK_MASK) {
WARN(1, "external feedback mode not yet supported");
return ULONG_MAX;
}
fbdiv = __wrpll_calc_fbdiv(c);
n = parent_rate * fbdiv * (c->divf + 1);
n = div_u64(n, c->divr + 1);
n >>= c->divq;
return n;
}
/**
* wrpll_calc_max_lock_us() - return the time for the PLL to lock
* @c: ptr to a struct wrpll_cfg record to read from
*
* Return the minimum amount of time (in microseconds) that the caller
* must wait after reprogramming the PLL to ensure that it is locked
* to the input frequency and stable. This is likely to depend on the DIVR
* value; this is under discussion with the manufacturer.
*
* Return: the minimum amount of time the caller must wait for the PLL
* to lock (in microseconds)
*/
unsigned int wrpll_calc_max_lock_us(const struct wrpll_cfg *c)
{
return MAX_LOCK_US;
}
|