1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
// SPDX-License-Identifier: GPL-2.0
#include <linux/string.h>
#include <linux/elf.h>
#include <asm/boot_data.h>
#include <asm/sections.h>
#include <asm/cpu_mf.h>
#include <asm/setup.h>
#include <asm/kasan.h>
#include <asm/kexec.h>
#include <asm/sclp.h>
#include <asm/diag.h>
#include <asm/uv.h>
#include "compressed/decompressor.h"
#include "boot.h"
extern char __boot_data_start[], __boot_data_end[];
extern char __boot_data_preserved_start[], __boot_data_preserved_end[];
unsigned long __bootdata_preserved(__kaslr_offset);
unsigned long __bootdata_preserved(VMALLOC_START);
unsigned long __bootdata_preserved(VMALLOC_END);
struct page *__bootdata_preserved(vmemmap);
unsigned long __bootdata_preserved(vmemmap_size);
unsigned long __bootdata_preserved(MODULES_VADDR);
unsigned long __bootdata_preserved(MODULES_END);
unsigned long __bootdata(ident_map_size);
u64 __bootdata_preserved(stfle_fac_list[16]);
u64 __bootdata_preserved(alt_stfle_fac_list[16]);
/*
* Some code and data needs to stay below 2 GB, even when the kernel would be
* relocated above 2 GB, because it has to use 31 bit addresses.
* Such code and data is part of the .dma section, and its location is passed
* over to the decompressed / relocated kernel via the .boot.preserved.data
* section.
*/
extern char _sdma[], _edma[];
extern char _stext_dma[], _etext_dma[];
extern struct exception_table_entry _start_dma_ex_table[];
extern struct exception_table_entry _stop_dma_ex_table[];
unsigned long __bootdata_preserved(__sdma) = __pa(&_sdma);
unsigned long __bootdata_preserved(__edma) = __pa(&_edma);
unsigned long __bootdata_preserved(__stext_dma) = __pa(&_stext_dma);
unsigned long __bootdata_preserved(__etext_dma) = __pa(&_etext_dma);
struct exception_table_entry *
__bootdata_preserved(__start_dma_ex_table) = _start_dma_ex_table;
struct exception_table_entry *
__bootdata_preserved(__stop_dma_ex_table) = _stop_dma_ex_table;
int _diag210_dma(struct diag210 *addr);
int _diag26c_dma(void *req, void *resp, enum diag26c_sc subcode);
int _diag14_dma(unsigned long rx, unsigned long ry1, unsigned long subcode);
void _diag0c_dma(struct hypfs_diag0c_entry *entry);
void _diag308_reset_dma(void);
struct diag_ops __bootdata_preserved(diag_dma_ops) = {
.diag210 = _diag210_dma,
.diag26c = _diag26c_dma,
.diag14 = _diag14_dma,
.diag0c = _diag0c_dma,
.diag308_reset = _diag308_reset_dma
};
static struct diag210 _diag210_tmp_dma __section(".dma.data");
struct diag210 *__bootdata_preserved(__diag210_tmp_dma) = &_diag210_tmp_dma;
void error(char *x)
{
sclp_early_printk("\n\n");
sclp_early_printk(x);
sclp_early_printk("\n\n -- System halted");
disabled_wait();
}
static void setup_lpp(void)
{
S390_lowcore.current_pid = 0;
S390_lowcore.lpp = LPP_MAGIC;
if (test_facility(40))
lpp(&S390_lowcore.lpp);
}
#ifdef CONFIG_KERNEL_UNCOMPRESSED
unsigned long mem_safe_offset(void)
{
return vmlinux.default_lma + vmlinux.image_size + vmlinux.bss_size;
}
#endif
static void rescue_initrd(unsigned long addr)
{
if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
return;
if (!INITRD_START || !INITRD_SIZE)
return;
if (addr <= INITRD_START)
return;
memmove((void *)addr, (void *)INITRD_START, INITRD_SIZE);
INITRD_START = addr;
}
static void copy_bootdata(void)
{
if (__boot_data_end - __boot_data_start != vmlinux.bootdata_size)
error(".boot.data section size mismatch");
memcpy((void *)vmlinux.bootdata_off, __boot_data_start, vmlinux.bootdata_size);
if (__boot_data_preserved_end - __boot_data_preserved_start != vmlinux.bootdata_preserved_size)
error(".boot.preserved.data section size mismatch");
memcpy((void *)vmlinux.bootdata_preserved_off, __boot_data_preserved_start, vmlinux.bootdata_preserved_size);
}
static void handle_relocs(unsigned long offset)
{
Elf64_Rela *rela_start, *rela_end, *rela;
int r_type, r_sym, rc;
Elf64_Addr loc, val;
Elf64_Sym *dynsym;
rela_start = (Elf64_Rela *) vmlinux.rela_dyn_start;
rela_end = (Elf64_Rela *) vmlinux.rela_dyn_end;
dynsym = (Elf64_Sym *) vmlinux.dynsym_start;
for (rela = rela_start; rela < rela_end; rela++) {
loc = rela->r_offset + offset;
val = rela->r_addend;
r_sym = ELF64_R_SYM(rela->r_info);
if (r_sym) {
if (dynsym[r_sym].st_shndx != SHN_UNDEF)
val += dynsym[r_sym].st_value + offset;
} else {
/*
* 0 == undefined symbol table index (STN_UNDEF),
* used for R_390_RELATIVE, only add KASLR offset
*/
val += offset;
}
r_type = ELF64_R_TYPE(rela->r_info);
rc = arch_kexec_do_relocs(r_type, (void *) loc, val, 0);
if (rc)
error("Unknown relocation type");
}
}
/*
* Merge information from several sources into a single ident_map_size value.
* "ident_map_size" represents the upper limit of physical memory we may ever
* reach. It might not be all online memory, but also include standby (offline)
* memory. "ident_map_size" could be lower then actual standby or even online
* memory present, due to limiting factors. We should never go above this limit.
* It is the size of our identity mapping.
*
* Consider the following factors:
* 1. max_physmem_end - end of physical memory online or standby.
* Always <= end of the last online memory block (get_mem_detect_end()).
* 2. CONFIG_MAX_PHYSMEM_BITS - the maximum size of physical memory the
* kernel is able to support.
* 3. "mem=" kernel command line option which limits physical memory usage.
* 4. OLDMEM_BASE which is a kdump memory limit when the kernel is executed as
* crash kernel.
* 5. "hsa" size which is a memory limit when the kernel is executed during
* zfcp/nvme dump.
*/
static void setup_ident_map_size(unsigned long max_physmem_end)
{
unsigned long hsa_size;
ident_map_size = max_physmem_end;
if (memory_limit)
ident_map_size = min(ident_map_size, memory_limit);
ident_map_size = min(ident_map_size, 1UL << MAX_PHYSMEM_BITS);
#ifdef CONFIG_CRASH_DUMP
if (OLDMEM_BASE) {
kaslr_enabled = 0;
ident_map_size = min(ident_map_size, OLDMEM_SIZE);
} else if (ipl_block_valid && is_ipl_block_dump()) {
kaslr_enabled = 0;
if (!sclp_early_get_hsa_size(&hsa_size) && hsa_size)
ident_map_size = min(ident_map_size, hsa_size);
}
#endif
}
static void setup_kernel_memory_layout(void)
{
bool vmalloc_size_verified = false;
unsigned long vmemmap_off;
unsigned long vspace_left;
unsigned long rte_size;
unsigned long pages;
unsigned long vmax;
pages = ident_map_size / PAGE_SIZE;
/* vmemmap contains a multiple of PAGES_PER_SECTION struct pages */
vmemmap_size = SECTION_ALIGN_UP(pages) * sizeof(struct page);
/* choose kernel address space layout: 4 or 3 levels. */
vmemmap_off = round_up(ident_map_size, _REGION3_SIZE);
if (IS_ENABLED(CONFIG_KASAN) ||
vmalloc_size > _REGION2_SIZE ||
vmemmap_off + vmemmap_size + vmalloc_size + MODULES_LEN > _REGION2_SIZE)
vmax = _REGION1_SIZE;
else
vmax = _REGION2_SIZE;
/* keep vmemmap_off aligned to a top level region table entry */
rte_size = vmax == _REGION1_SIZE ? _REGION2_SIZE : _REGION3_SIZE;
MODULES_END = vmax;
if (is_prot_virt_host()) {
/*
* forcing modules and vmalloc area under the ultravisor
* secure storage limit, so that any vmalloc allocation
* we do could be used to back secure guest storage.
*/
adjust_to_uv_max(&MODULES_END);
}
#ifdef CONFIG_KASAN
if (MODULES_END < vmax) {
/* force vmalloc and modules below kasan shadow */
MODULES_END = min(MODULES_END, KASAN_SHADOW_START);
} else {
/*
* leave vmalloc and modules above kasan shadow but make
* sure they don't overlap with it
*/
vmalloc_size = min(vmalloc_size, vmax - KASAN_SHADOW_END - MODULES_LEN);
vmalloc_size_verified = true;
vspace_left = KASAN_SHADOW_START;
}
#endif
MODULES_VADDR = MODULES_END - MODULES_LEN;
VMALLOC_END = MODULES_VADDR;
if (vmalloc_size_verified) {
VMALLOC_START = VMALLOC_END - vmalloc_size;
} else {
vmemmap_off = round_up(ident_map_size, rte_size);
if (vmemmap_off + vmemmap_size > VMALLOC_END ||
vmalloc_size > VMALLOC_END - vmemmap_off - vmemmap_size) {
/*
* allow vmalloc area to occupy up to 1/2 of
* the rest virtual space left.
*/
vmalloc_size = min(vmalloc_size, VMALLOC_END / 2);
}
VMALLOC_START = VMALLOC_END - vmalloc_size;
vspace_left = VMALLOC_START;
}
pages = vspace_left / (PAGE_SIZE + sizeof(struct page));
pages = SECTION_ALIGN_UP(pages);
vmemmap_off = round_up(vspace_left - pages * sizeof(struct page), rte_size);
/* keep vmemmap left most starting from a fresh region table entry */
vmemmap_off = min(vmemmap_off, round_up(ident_map_size, rte_size));
/* take care that identity map is lower then vmemmap */
ident_map_size = min(ident_map_size, vmemmap_off);
vmemmap_size = SECTION_ALIGN_UP(ident_map_size / PAGE_SIZE) * sizeof(struct page);
VMALLOC_START = max(vmemmap_off + vmemmap_size, VMALLOC_START);
vmemmap = (struct page *)vmemmap_off;
}
/*
* This function clears the BSS section of the decompressed Linux kernel and NOT the decompressor's.
*/
static void clear_bss_section(void)
{
memset((void *)vmlinux.default_lma + vmlinux.image_size, 0, vmlinux.bss_size);
}
/*
* Set vmalloc area size to an 8th of (potential) physical memory
* size, unless size has been set by kernel command line parameter.
*/
static void setup_vmalloc_size(void)
{
unsigned long size;
if (vmalloc_size_set)
return;
size = round_up(ident_map_size / 8, _SEGMENT_SIZE);
vmalloc_size = max(size, vmalloc_size);
}
void startup_kernel(void)
{
unsigned long random_lma;
unsigned long safe_addr;
void *img;
setup_lpp();
store_ipl_parmblock();
safe_addr = mem_safe_offset();
safe_addr = read_ipl_report(safe_addr);
uv_query_info();
rescue_initrd(safe_addr);
sclp_early_read_info();
setup_boot_command_line();
parse_boot_command_line();
setup_ident_map_size(detect_memory());
setup_vmalloc_size();
setup_kernel_memory_layout();
random_lma = __kaslr_offset = 0;
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_enabled) {
random_lma = get_random_base(safe_addr);
if (random_lma) {
__kaslr_offset = random_lma - vmlinux.default_lma;
img = (void *)vmlinux.default_lma;
vmlinux.default_lma += __kaslr_offset;
vmlinux.entry += __kaslr_offset;
vmlinux.bootdata_off += __kaslr_offset;
vmlinux.bootdata_preserved_off += __kaslr_offset;
vmlinux.rela_dyn_start += __kaslr_offset;
vmlinux.rela_dyn_end += __kaslr_offset;
vmlinux.dynsym_start += __kaslr_offset;
}
}
if (!IS_ENABLED(CONFIG_KERNEL_UNCOMPRESSED)) {
img = decompress_kernel();
memmove((void *)vmlinux.default_lma, img, vmlinux.image_size);
} else if (__kaslr_offset)
memcpy((void *)vmlinux.default_lma, img, vmlinux.image_size);
clear_bss_section();
copy_bootdata();
if (IS_ENABLED(CONFIG_RELOCATABLE))
handle_relocs(__kaslr_offset);
if (__kaslr_offset) {
/*
* Save KASLR offset for early dumps, before vmcore_info is set.
* Mark as uneven to distinguish from real vmcore_info pointer.
*/
S390_lowcore.vmcore_info = __kaslr_offset | 0x1UL;
/* Clear non-relocated kernel */
if (IS_ENABLED(CONFIG_KERNEL_UNCOMPRESSED))
memset(img, 0, vmlinux.image_size);
}
vmlinux.entry();
}
|