1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
|
/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
* Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Dave Engebretsen <engebret@us.ibm.com>
* Rework for PPC64 port.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/stddef.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/idr.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/abs_addr.h>
#include <asm/prom.h>
#include <asm/lmb.h>
#include <asm/rtas.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/uaccess.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/tlb.h>
#include <asm/eeh.h>
#include <asm/processor.h>
#include <asm/mmzone.h>
#include <asm/cputable.h>
#include <asm/ppcdebug.h>
#include <asm/sections.h>
#include <asm/system.h>
#include <asm/iommu.h>
#include <asm/abs_addr.h>
#include <asm/vdso.h>
#include <asm/imalloc.h>
int mem_init_done;
unsigned long ioremap_bot = IMALLOC_BASE;
static unsigned long phbs_io_bot = PHBS_IO_BASE;
extern pgd_t swapper_pg_dir[];
extern struct task_struct *current_set[NR_CPUS];
unsigned long klimit = (unsigned long)_end;
unsigned long _SDR1=0;
unsigned long _ASR=0;
/* max amount of RAM to use */
unsigned long __max_memory;
/* info on what we think the IO hole is */
unsigned long io_hole_start;
unsigned long io_hole_size;
void show_mem(void)
{
unsigned long total = 0, reserved = 0;
unsigned long shared = 0, cached = 0;
struct page *page;
pg_data_t *pgdat;
unsigned long i;
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
for_each_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; i++) {
page = pgdat->node_mem_map + i;
total++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (page_count(page))
shared += page_count(page) - 1;
}
}
printk("%ld pages of RAM\n", total);
printk("%ld reserved pages\n", reserved);
printk("%ld pages shared\n", shared);
printk("%ld pages swap cached\n", cached);
}
#ifdef CONFIG_PPC_ISERIES
void __iomem *ioremap(unsigned long addr, unsigned long size)
{
return (void __iomem *)addr;
}
extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
unsigned long flags)
{
return (void __iomem *)addr;
}
void iounmap(volatile void __iomem *addr)
{
return;
}
#else
/*
* map_io_page currently only called by __ioremap
* map_io_page adds an entry to the ioremap page table
* and adds an entry to the HPT, possibly bolting it
*/
static int map_io_page(unsigned long ea, unsigned long pa, int flags)
{
pgd_t *pgdp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
unsigned long vsid;
if (mem_init_done) {
spin_lock(&init_mm.page_table_lock);
pgdp = pgd_offset_k(ea);
pudp = pud_alloc(&init_mm, pgdp, ea);
if (!pudp)
return -ENOMEM;
pmdp = pmd_alloc(&init_mm, pudp, ea);
if (!pmdp)
return -ENOMEM;
ptep = pte_alloc_kernel(&init_mm, pmdp, ea);
if (!ptep)
return -ENOMEM;
pa = abs_to_phys(pa);
set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
__pgprot(flags)));
spin_unlock(&init_mm.page_table_lock);
} else {
unsigned long va, vpn, hash, hpteg;
/*
* If the mm subsystem is not fully up, we cannot create a
* linux page table entry for this mapping. Simply bolt an
* entry in the hardware page table.
*/
vsid = get_kernel_vsid(ea);
va = (vsid << 28) | (ea & 0xFFFFFFF);
vpn = va >> PAGE_SHIFT;
hash = hpt_hash(vpn, 0);
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
/* Panic if a pte grpup is full */
if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT, 0,
_PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX,
1, 0) == -1) {
panic("map_io_page: could not insert mapping");
}
}
return 0;
}
static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
unsigned long ea, unsigned long size,
unsigned long flags)
{
unsigned long i;
if ((flags & _PAGE_PRESENT) == 0)
flags |= pgprot_val(PAGE_KERNEL);
for (i = 0; i < size; i += PAGE_SIZE)
if (map_io_page(ea+i, pa+i, flags))
return NULL;
return (void __iomem *) (ea + (addr & ~PAGE_MASK));
}
void __iomem *
ioremap(unsigned long addr, unsigned long size)
{
return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
}
void __iomem * __ioremap(unsigned long addr, unsigned long size,
unsigned long flags)
{
unsigned long pa, ea;
void __iomem *ret;
/*
* Choose an address to map it to.
* Once the imalloc system is running, we use it.
* Before that, we map using addresses going
* up from ioremap_bot. imalloc will use
* the addresses from ioremap_bot through
* IMALLOC_END (0xE000001fffffffff)
*
*/
pa = addr & PAGE_MASK;
size = PAGE_ALIGN(addr + size) - pa;
if (size == 0)
return NULL;
if (mem_init_done) {
struct vm_struct *area;
area = im_get_free_area(size);
if (area == NULL)
return NULL;
ea = (unsigned long)(area->addr);
ret = __ioremap_com(addr, pa, ea, size, flags);
if (!ret)
im_free(area->addr);
} else {
ea = ioremap_bot;
ret = __ioremap_com(addr, pa, ea, size, flags);
if (ret)
ioremap_bot += size;
}
return ret;
}
#define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
int __ioremap_explicit(unsigned long pa, unsigned long ea,
unsigned long size, unsigned long flags)
{
struct vm_struct *area;
void __iomem *ret;
/* For now, require page-aligned values for pa, ea, and size */
if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
!IS_PAGE_ALIGNED(size)) {
printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
return 1;
}
if (!mem_init_done) {
/* Two things to consider in this case:
* 1) No records will be kept (imalloc, etc) that the region
* has been remapped
* 2) It won't be easy to iounmap() the region later (because
* of 1)
*/
;
} else {
area = im_get_area(ea, size,
IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
if (area == NULL) {
/* Expected when PHB-dlpar is in play */
return 1;
}
if (ea != (unsigned long) area->addr) {
printk(KERN_ERR "unexpected addr return from "
"im_get_area\n");
return 1;
}
}
ret = __ioremap_com(pa, pa, ea, size, flags);
if (ret == NULL) {
printk(KERN_ERR "ioremap_explicit() allocation failure !\n");
return 1;
}
if (ret != (void *) ea) {
printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
return 1;
}
return 0;
}
/*
* Unmap an IO region and remove it from imalloc'd list.
* Access to IO memory should be serialized by driver.
* This code is modeled after vmalloc code - unmap_vm_area()
*
* XXX what about calls before mem_init_done (ie python_countermeasures())
*/
void iounmap(volatile void __iomem *token)
{
void *addr;
if (!mem_init_done)
return;
addr = (void *) ((unsigned long __force) token & PAGE_MASK);
im_free(addr);
}
static int iounmap_subset_regions(unsigned long addr, unsigned long size)
{
struct vm_struct *area;
/* Check whether subsets of this region exist */
area = im_get_area(addr, size, IM_REGION_SUPERSET);
if (area == NULL)
return 1;
while (area) {
iounmap((void __iomem *) area->addr);
area = im_get_area(addr, size,
IM_REGION_SUPERSET);
}
return 0;
}
int iounmap_explicit(volatile void __iomem *start, unsigned long size)
{
struct vm_struct *area;
unsigned long addr;
int rc;
addr = (unsigned long __force) start & PAGE_MASK;
/* Verify that the region either exists or is a subset of an existing
* region. In the latter case, split the parent region to create
* the exact region
*/
area = im_get_area(addr, size,
IM_REGION_EXISTS | IM_REGION_SUBSET);
if (area == NULL) {
/* Determine whether subset regions exist. If so, unmap */
rc = iounmap_subset_regions(addr, size);
if (rc) {
printk(KERN_ERR
"%s() cannot unmap nonexistent range 0x%lx\n",
__FUNCTION__, addr);
return 1;
}
} else {
iounmap((void __iomem *) area->addr);
}
/*
* FIXME! This can't be right:
iounmap(area->addr);
* Maybe it should be "iounmap(area);"
*/
return 0;
}
#endif
EXPORT_SYMBOL(ioremap);
EXPORT_SYMBOL(__ioremap);
EXPORT_SYMBOL(iounmap);
void free_initmem(void)
{
unsigned long addr;
addr = (unsigned long)__init_begin;
for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
set_page_count(virt_to_page(addr), 1);
free_page(addr);
totalram_pages++;
}
printk ("Freeing unused kernel memory: %luk freed\n",
((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start < end)
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
ClearPageReserved(virt_to_page(start));
set_page_count(virt_to_page(start), 1);
free_page(start);
totalram_pages++;
}
}
#endif
static DEFINE_SPINLOCK(mmu_context_lock);
static DEFINE_IDR(mmu_context_idr);
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
{
int index;
int err;
#ifdef CONFIG_HUGETLB_PAGE
/* We leave htlb_segs as it was, but for a fork, we need to
* clear the huge_pgdir. */
mm->context.huge_pgdir = NULL;
#endif
again:
if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
return -ENOMEM;
spin_lock(&mmu_context_lock);
err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
spin_unlock(&mmu_context_lock);
if (err == -EAGAIN)
goto again;
else if (err)
return err;
if (index > MAX_CONTEXT) {
idr_remove(&mmu_context_idr, index);
return -ENOMEM;
}
mm->context.id = index;
return 0;
}
void destroy_context(struct mm_struct *mm)
{
spin_lock(&mmu_context_lock);
idr_remove(&mmu_context_idr, mm->context.id);
spin_unlock(&mmu_context_lock);
mm->context.id = NO_CONTEXT;
hugetlb_mm_free_pgd(mm);
}
/*
* Do very early mm setup.
*/
void __init mm_init_ppc64(void)
{
#ifndef CONFIG_PPC_ISERIES
unsigned long i;
#endif
ppc64_boot_msg(0x100, "MM Init");
/* This is the story of the IO hole... please, keep seated,
* unfortunately, we are out of oxygen masks at the moment.
* So we need some rough way to tell where your big IO hole
* is. On pmac, it's between 2G and 4G, on POWER3, it's around
* that area as well, on POWER4 we don't have one, etc...
* We need that as a "hint" when sizing the TCE table on POWER3
* So far, the simplest way that seem work well enough for us it
* to just assume that the first discontinuity in our physical
* RAM layout is the IO hole. That may not be correct in the future
* (and isn't on iSeries but then we don't care ;)
*/
#ifndef CONFIG_PPC_ISERIES
for (i = 1; i < lmb.memory.cnt; i++) {
unsigned long base, prevbase, prevsize;
prevbase = lmb.memory.region[i-1].physbase;
prevsize = lmb.memory.region[i-1].size;
base = lmb.memory.region[i].physbase;
if (base > (prevbase + prevsize)) {
io_hole_start = prevbase + prevsize;
io_hole_size = base - (prevbase + prevsize);
break;
}
}
#endif /* CONFIG_PPC_ISERIES */
if (io_hole_start)
printk("IO Hole assumed to be %lx -> %lx\n",
io_hole_start, io_hole_start + io_hole_size - 1);
ppc64_boot_msg(0x100, "MM Init Done");
}
/*
* This is called by /dev/mem to know if a given address has to
* be mapped non-cacheable or not
*/
int page_is_ram(unsigned long pfn)
{
int i;
unsigned long paddr = (pfn << PAGE_SHIFT);
for (i=0; i < lmb.memory.cnt; i++) {
unsigned long base;
#ifdef CONFIG_MSCHUNKS
base = lmb.memory.region[i].physbase;
#else
base = lmb.memory.region[i].base;
#endif
if ((paddr >= base) &&
(paddr < (base + lmb.memory.region[i].size))) {
return 1;
}
}
return 0;
}
EXPORT_SYMBOL(page_is_ram);
/*
* Initialize the bootmem system and give it all the memory we
* have available.
*/
#ifndef CONFIG_DISCONTIGMEM
void __init do_init_bootmem(void)
{
unsigned long i;
unsigned long start, bootmap_pages;
unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
int boot_mapsize;
/*
* Find an area to use for the bootmem bitmap. Calculate the size of
* bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
* Add 1 additional page in case the address isn't page-aligned.
*/
bootmap_pages = bootmem_bootmap_pages(total_pages);
start = abs_to_phys(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE));
BUG_ON(!start);
boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
max_pfn = max_low_pfn;
/* add all physical memory to the bootmem map. Also find the first */
for (i=0; i < lmb.memory.cnt; i++) {
unsigned long physbase, size;
physbase = lmb.memory.region[i].physbase;
size = lmb.memory.region[i].size;
free_bootmem(physbase, size);
}
/* reserve the sections we're already using */
for (i=0; i < lmb.reserved.cnt; i++) {
unsigned long physbase = lmb.reserved.region[i].physbase;
unsigned long size = lmb.reserved.region[i].size;
reserve_bootmem(physbase, size);
}
}
/*
* paging_init() sets up the page tables - in fact we've already done this.
*/
void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long total_ram = lmb_phys_mem_size();
unsigned long top_of_ram = lmb_end_of_DRAM();
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
top_of_ram, total_ram);
printk(KERN_INFO "Memory hole size: %ldMB\n",
(top_of_ram - total_ram) >> 20);
/*
* All pages are DMA-able so we put them all in the DMA zone.
*/
memset(zones_size, 0, sizeof(zones_size));
memset(zholes_size, 0, sizeof(zholes_size));
zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
free_area_init_node(0, NODE_DATA(0), zones_size,
__pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
}
#endif /* CONFIG_DISCONTIGMEM */
static struct kcore_list kcore_vmem;
static int __init setup_kcore(void)
{
int i;
for (i=0; i < lmb.memory.cnt; i++) {
unsigned long physbase, size;
struct kcore_list *kcore_mem;
physbase = lmb.memory.region[i].physbase;
size = lmb.memory.region[i].size;
/* GFP_ATOMIC to avoid might_sleep warnings during boot */
kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
if (!kcore_mem)
panic("mem_init: kmalloc failed\n");
kclist_add(kcore_mem, __va(physbase), size);
}
kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
return 0;
}
module_init(setup_kcore);
void __init mem_init(void)
{
#ifdef CONFIG_DISCONTIGMEM
int nid;
#endif
pg_data_t *pgdat;
unsigned long i;
struct page *page;
unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
num_physpages = max_low_pfn; /* RAM is assumed contiguous */
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
#ifdef CONFIG_DISCONTIGMEM
for_each_online_node(nid) {
if (NODE_DATA(nid)->node_spanned_pages != 0) {
printk("freeing bootmem node %x\n", nid);
totalram_pages +=
free_all_bootmem_node(NODE_DATA(nid));
}
}
#else
max_mapnr = num_physpages;
totalram_pages += free_all_bootmem();
#endif
for_each_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; i++) {
page = pgdat->node_mem_map + i;
if (PageReserved(page))
reservedpages++;
}
}
codesize = (unsigned long)&_etext - (unsigned long)&_stext;
initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
"%luk reserved, %luk data, %luk bss, %luk init)\n",
(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
bsssize >> 10,
initsize >> 10);
mem_init_done = 1;
#ifdef CONFIG_PPC_ISERIES
iommu_vio_init();
#endif
/* Initialize the vDSO */
vdso_init();
}
/*
* This is called when a page has been modified by the kernel.
* It just marks the page as not i-cache clean. We do the i-cache
* flush later when the page is given to a user process, if necessary.
*/
void flush_dcache_page(struct page *page)
{
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
return;
/* avoid an atomic op if possible */
if (test_bit(PG_arch_1, &page->flags))
clear_bit(PG_arch_1, &page->flags);
}
EXPORT_SYMBOL(flush_dcache_page);
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
{
clear_page(page);
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
return;
/*
* We shouldnt have to do this, but some versions of glibc
* require it (ld.so assumes zero filled pages are icache clean)
* - Anton
*/
/* avoid an atomic op if possible */
if (test_bit(PG_arch_1, &pg->flags))
clear_bit(PG_arch_1, &pg->flags);
}
EXPORT_SYMBOL(clear_user_page);
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
struct page *pg)
{
copy_page(vto, vfrom);
/*
* We should be able to use the following optimisation, however
* there are two problems.
* Firstly a bug in some versions of binutils meant PLT sections
* were not marked executable.
* Secondly the first word in the GOT section is blrl, used
* to establish the GOT address. Until recently the GOT was
* not marked executable.
* - Anton
*/
#if 0
if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
return;
#endif
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
return;
/* avoid an atomic op if possible */
if (test_bit(PG_arch_1, &pg->flags))
clear_bit(PG_arch_1, &pg->flags);
}
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
unsigned long addr, int len)
{
unsigned long maddr;
maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
flush_icache_range(maddr, maddr + len);
}
EXPORT_SYMBOL(flush_icache_user_range);
/*
* This is called at the end of handling a user page fault, when the
* fault has been handled by updating a PTE in the linux page tables.
* We use it to preload an HPTE into the hash table corresponding to
* the updated linux PTE.
*
* This must always be called with the mm->page_table_lock held
*/
void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
pte_t pte)
{
unsigned long vsid;
void *pgdir;
pte_t *ptep;
int local = 0;
cpumask_t tmp;
unsigned long flags;
/* handle i-cache coherency */
if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
!cpu_has_feature(CPU_FTR_NOEXECUTE)) {
unsigned long pfn = pte_pfn(pte);
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
if (!PageReserved(page)
&& !test_bit(PG_arch_1, &page->flags)) {
__flush_dcache_icache(page_address(page));
set_bit(PG_arch_1, &page->flags);
}
}
}
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
if (!pte_young(pte))
return;
pgdir = vma->vm_mm->pgd;
if (pgdir == NULL)
return;
ptep = find_linux_pte(pgdir, ea);
if (!ptep)
return;
vsid = get_vsid(vma->vm_mm->context.id, ea);
local_irq_save(flags);
tmp = cpumask_of_cpu(smp_processor_id());
if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
local = 1;
__hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
0x300, local);
local_irq_restore(flags);
}
void __iomem * reserve_phb_iospace(unsigned long size)
{
void __iomem *virt_addr;
if (phbs_io_bot >= IMALLOC_BASE)
panic("reserve_phb_iospace(): phb io space overflow\n");
virt_addr = (void __iomem *) phbs_io_bot;
phbs_io_bot += size;
return virt_addr;
}
kmem_cache_t *zero_cache;
static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags)
{
memset(pte, 0, PAGE_SIZE);
}
void pgtable_cache_init(void)
{
zero_cache = kmem_cache_create("zero",
PAGE_SIZE,
0,
SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN,
zero_ctor,
NULL);
if (!zero_cache)
panic("pgtable_cache_init(): could not create zero_cache!\n");
}
pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
unsigned long size, pgprot_t vma_prot)
{
if (ppc_md.phys_mem_access_prot)
return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
if (!page_is_ram(addr >> PAGE_SHIFT))
vma_prot = __pgprot(pgprot_val(vma_prot)
| _PAGE_GUARDED | _PAGE_NO_CACHE);
return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
|