1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
/*
* Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
* reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the NetLogic
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <asm/mipsregs.h>
#include <asm/time.h>
#include <asm/netlogic/common.h>
#include <asm/netlogic/haldefs.h>
#include <asm/netlogic/xlp-hal/iomap.h>
#include <asm/netlogic/xlp-hal/xlp.h>
#include <asm/netlogic/xlp-hal/bridge.h>
#include <asm/netlogic/xlp-hal/pic.h>
#include <asm/netlogic/xlp-hal/sys.h>
/* Main initialization */
void nlm_node_init(int node)
{
struct nlm_soc_info *nodep;
nodep = nlm_get_node(node);
if (node == 0)
nodep->coremask = 1; /* node 0, boot cpu */
nodep->sysbase = nlm_get_sys_regbase(node);
nodep->picbase = nlm_get_pic_regbase(node);
nodep->ebase = read_c0_ebase() & (~((1 << 12) - 1));
if (cpu_is_xlp9xx())
nodep->socbus = xlp9xx_get_socbus(node);
else
nodep->socbus = 0;
spin_lock_init(&nodep->piclock);
}
static int xlp9xx_irq_to_irt(int irq)
{
switch (irq) {
case PIC_GPIO_IRQ:
return 12;
case PIC_9XX_XHCI_0_IRQ:
return 114;
case PIC_9XX_XHCI_1_IRQ:
return 115;
case PIC_UART_0_IRQ:
return 133;
case PIC_UART_1_IRQ:
return 134;
case PIC_SATA_IRQ:
return 143;
case PIC_SPI_IRQ:
return 152;
case PIC_MMC_IRQ:
return 153;
case PIC_PCIE_LINK_LEGACY_IRQ(0):
case PIC_PCIE_LINK_LEGACY_IRQ(1):
case PIC_PCIE_LINK_LEGACY_IRQ(2):
case PIC_PCIE_LINK_LEGACY_IRQ(3):
return 191 + irq - PIC_PCIE_LINK_LEGACY_IRQ_BASE;
}
return -1;
}
static int xlp_irq_to_irt(int irq)
{
uint64_t pcibase;
int devoff, irt;
devoff = 0;
switch (irq) {
case PIC_UART_0_IRQ:
devoff = XLP_IO_UART0_OFFSET(0);
break;
case PIC_UART_1_IRQ:
devoff = XLP_IO_UART1_OFFSET(0);
break;
case PIC_MMC_IRQ:
devoff = XLP_IO_MMC_OFFSET(0);
break;
case PIC_I2C_0_IRQ: /* I2C will be fixed up */
case PIC_I2C_1_IRQ:
case PIC_I2C_2_IRQ:
case PIC_I2C_3_IRQ:
if (cpu_is_xlpii())
devoff = XLP2XX_IO_I2C_OFFSET(0);
else
devoff = XLP_IO_I2C0_OFFSET(0);
break;
case PIC_SATA_IRQ:
devoff = XLP_IO_SATA_OFFSET(0);
break;
case PIC_GPIO_IRQ:
devoff = XLP_IO_GPIO_OFFSET(0);
break;
case PIC_NAND_IRQ:
devoff = XLP_IO_NAND_OFFSET(0);
break;
case PIC_SPI_IRQ:
devoff = XLP_IO_SPI_OFFSET(0);
break;
default:
if (cpu_is_xlpii()) {
switch (irq) {
/* XLP2XX has three XHCI USB controller */
case PIC_2XX_XHCI_0_IRQ:
devoff = XLP2XX_IO_USB_XHCI0_OFFSET(0);
break;
case PIC_2XX_XHCI_1_IRQ:
devoff = XLP2XX_IO_USB_XHCI1_OFFSET(0);
break;
case PIC_2XX_XHCI_2_IRQ:
devoff = XLP2XX_IO_USB_XHCI2_OFFSET(0);
break;
}
} else {
switch (irq) {
case PIC_EHCI_0_IRQ:
devoff = XLP_IO_USB_EHCI0_OFFSET(0);
break;
case PIC_EHCI_1_IRQ:
devoff = XLP_IO_USB_EHCI1_OFFSET(0);
break;
case PIC_OHCI_0_IRQ:
devoff = XLP_IO_USB_OHCI0_OFFSET(0);
break;
case PIC_OHCI_1_IRQ:
devoff = XLP_IO_USB_OHCI1_OFFSET(0);
break;
case PIC_OHCI_2_IRQ:
devoff = XLP_IO_USB_OHCI2_OFFSET(0);
break;
case PIC_OHCI_3_IRQ:
devoff = XLP_IO_USB_OHCI3_OFFSET(0);
break;
}
}
}
if (devoff != 0) {
pcibase = nlm_pcicfg_base(devoff);
irt = nlm_read_reg(pcibase, XLP_PCI_IRTINFO_REG) & 0xffff;
/* HW weirdness, I2C IRT entry has to be fixed up */
switch (irq) {
case PIC_I2C_1_IRQ:
irt = irt + 1; break;
case PIC_I2C_2_IRQ:
irt = irt + 2; break;
case PIC_I2C_3_IRQ:
irt = irt + 3; break;
}
} else if (irq >= PIC_PCIE_LINK_LEGACY_IRQ(0) &&
irq <= PIC_PCIE_LINK_LEGACY_IRQ(3)) {
/* HW bug, PCI IRT entries are bad on early silicon, fix */
irt = PIC_IRT_PCIE_LINK_INDEX(irq -
PIC_PCIE_LINK_LEGACY_IRQ_BASE);
} else {
irt = -1;
}
return irt;
}
int nlm_irq_to_irt(int irq)
{
/* return -2 for irqs without 1-1 mapping */
if (irq >= PIC_PCIE_LINK_MSI_IRQ(0) && irq <= PIC_PCIE_LINK_MSI_IRQ(3))
return -2;
if (irq >= PIC_PCIE_MSIX_IRQ(0) && irq <= PIC_PCIE_MSIX_IRQ(3))
return -2;
if (cpu_is_xlp9xx())
return xlp9xx_irq_to_irt(irq);
else
return xlp_irq_to_irt(irq);
}
static unsigned int nlm_xlp2_get_core_frequency(int node, int core)
{
unsigned int pll_post_div, ctrl_val0, ctrl_val1, denom;
uint64_t num, sysbase, clockbase;
if (cpu_is_xlp9xx()) {
clockbase = nlm_get_clock_regbase(node);
ctrl_val0 = nlm_read_sys_reg(clockbase,
SYS_9XX_CPU_PLL_CTRL0(core));
ctrl_val1 = nlm_read_sys_reg(clockbase,
SYS_9XX_CPU_PLL_CTRL1(core));
} else {
sysbase = nlm_get_node(node)->sysbase;
ctrl_val0 = nlm_read_sys_reg(sysbase,
SYS_CPU_PLL_CTRL0(core));
ctrl_val1 = nlm_read_sys_reg(sysbase,
SYS_CPU_PLL_CTRL1(core));
}
/* Find PLL post divider value */
switch ((ctrl_val0 >> 24) & 0x7) {
case 1:
pll_post_div = 2;
break;
case 3:
pll_post_div = 4;
break;
case 7:
pll_post_div = 8;
break;
case 6:
pll_post_div = 16;
break;
case 0:
default:
pll_post_div = 1;
break;
}
num = 1000000ULL * (400 * 3 + 100 * (ctrl_val1 & 0x3f));
denom = 3 * pll_post_div;
do_div(num, denom);
return (unsigned int)num;
}
static unsigned int nlm_xlp_get_core_frequency(int node, int core)
{
unsigned int pll_divf, pll_divr, dfs_div, ext_div;
unsigned int rstval, dfsval, denom;
uint64_t num, sysbase;
sysbase = nlm_get_node(node)->sysbase;
rstval = nlm_read_sys_reg(sysbase, SYS_POWER_ON_RESET_CFG);
dfsval = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIV_VALUE);
pll_divf = ((rstval >> 10) & 0x7f) + 1;
pll_divr = ((rstval >> 8) & 0x3) + 1;
ext_div = ((rstval >> 30) & 0x3) + 1;
dfs_div = ((dfsval >> (core * 4)) & 0xf) + 1;
num = 800000000ULL * pll_divf;
denom = 3 * pll_divr * ext_div * dfs_div;
do_div(num, denom);
return (unsigned int)num;
}
unsigned int nlm_get_core_frequency(int node, int core)
{
if (cpu_is_xlpii())
return nlm_xlp2_get_core_frequency(node, core);
else
return nlm_xlp_get_core_frequency(node, core);
}
/*
* Calculate PIC frequency from PLL registers.
* freq_out = (ref_freq/2 * (6 + ctrl2[7:0]) + ctrl2[20:8]/2^13) /
* ((2^ctrl0[7:5]) * Table(ctrl0[26:24]))
*/
static unsigned int nlm_xlp2_get_pic_frequency(int node)
{
u32 ctrl_val0, ctrl_val2, vco_post_div, pll_post_div, cpu_xlp9xx;
u32 mdiv, fdiv, pll_out_freq_den, reg_select, ref_div, pic_div;
u64 sysbase, pll_out_freq_num, ref_clk_select, clockbase, ref_clk;
sysbase = nlm_get_node(node)->sysbase;
clockbase = nlm_get_clock_regbase(node);
cpu_xlp9xx = cpu_is_xlp9xx();
/* Find ref_clk_base */
if (cpu_xlp9xx)
ref_clk_select = (nlm_read_sys_reg(sysbase,
SYS_9XX_POWER_ON_RESET_CFG) >> 18) & 0x3;
else
ref_clk_select = (nlm_read_sys_reg(sysbase,
SYS_POWER_ON_RESET_CFG) >> 18) & 0x3;
switch (ref_clk_select) {
case 0:
ref_clk = 200000000ULL;
ref_div = 3;
break;
case 1:
ref_clk = 100000000ULL;
ref_div = 1;
break;
case 2:
ref_clk = 125000000ULL;
ref_div = 1;
break;
case 3:
ref_clk = 400000000ULL;
ref_div = 3;
break;
}
/* Find the clock source PLL device for PIC */
if (cpu_xlp9xx) {
reg_select = nlm_read_sys_reg(clockbase,
SYS_9XX_CLK_DEV_SEL) & 0x3;
switch (reg_select) {
case 0:
ctrl_val0 = nlm_read_sys_reg(clockbase,
SYS_9XX_PLL_CTRL0);
ctrl_val2 = nlm_read_sys_reg(clockbase,
SYS_9XX_PLL_CTRL2);
break;
case 1:
ctrl_val0 = nlm_read_sys_reg(clockbase,
SYS_9XX_PLL_CTRL0_DEVX(0));
ctrl_val2 = nlm_read_sys_reg(clockbase,
SYS_9XX_PLL_CTRL2_DEVX(0));
break;
case 2:
ctrl_val0 = nlm_read_sys_reg(clockbase,
SYS_9XX_PLL_CTRL0_DEVX(1));
ctrl_val2 = nlm_read_sys_reg(clockbase,
SYS_9XX_PLL_CTRL2_DEVX(1));
break;
case 3:
ctrl_val0 = nlm_read_sys_reg(clockbase,
SYS_9XX_PLL_CTRL0_DEVX(2));
ctrl_val2 = nlm_read_sys_reg(clockbase,
SYS_9XX_PLL_CTRL2_DEVX(2));
break;
}
} else {
reg_select = (nlm_read_sys_reg(sysbase,
SYS_CLK_DEV_SEL) >> 22) & 0x3;
switch (reg_select) {
case 0:
ctrl_val0 = nlm_read_sys_reg(sysbase,
SYS_PLL_CTRL0);
ctrl_val2 = nlm_read_sys_reg(sysbase,
SYS_PLL_CTRL2);
break;
case 1:
ctrl_val0 = nlm_read_sys_reg(sysbase,
SYS_PLL_CTRL0_DEVX(0));
ctrl_val2 = nlm_read_sys_reg(sysbase,
SYS_PLL_CTRL2_DEVX(0));
break;
case 2:
ctrl_val0 = nlm_read_sys_reg(sysbase,
SYS_PLL_CTRL0_DEVX(1));
ctrl_val2 = nlm_read_sys_reg(sysbase,
SYS_PLL_CTRL2_DEVX(1));
break;
case 3:
ctrl_val0 = nlm_read_sys_reg(sysbase,
SYS_PLL_CTRL0_DEVX(2));
ctrl_val2 = nlm_read_sys_reg(sysbase,
SYS_PLL_CTRL2_DEVX(2));
break;
}
}
vco_post_div = (ctrl_val0 >> 5) & 0x7;
pll_post_div = (ctrl_val0 >> 24) & 0x7;
mdiv = ctrl_val2 & 0xff;
fdiv = (ctrl_val2 >> 8) & 0x1fff;
/* Find PLL post divider value */
switch (pll_post_div) {
case 1:
pll_post_div = 2;
break;
case 3:
pll_post_div = 4;
break;
case 7:
pll_post_div = 8;
break;
case 6:
pll_post_div = 16;
break;
case 0:
default:
pll_post_div = 1;
break;
}
fdiv = fdiv/(1 << 13);
pll_out_freq_num = ((ref_clk >> 1) * (6 + mdiv)) + fdiv;
pll_out_freq_den = (1 << vco_post_div) * pll_post_div * 3;
if (pll_out_freq_den > 0)
do_div(pll_out_freq_num, pll_out_freq_den);
/* PIC post divider, which happens after PLL */
if (cpu_xlp9xx)
pic_div = nlm_read_sys_reg(clockbase,
SYS_9XX_CLK_DEV_DIV) & 0x3;
else
pic_div = (nlm_read_sys_reg(sysbase,
SYS_CLK_DEV_DIV) >> 22) & 0x3;
do_div(pll_out_freq_num, 1 << pic_div);
return pll_out_freq_num;
}
unsigned int nlm_get_pic_frequency(int node)
{
if (cpu_is_xlpii())
return nlm_xlp2_get_pic_frequency(node);
else
return 133333333;
}
unsigned int nlm_get_cpu_frequency(void)
{
return nlm_get_core_frequency(0, 0);
}
/*
* Fills upto 8 pairs of entries containing the DRAM map of a node
* if n < 0, get dram map for all nodes
*/
int xlp_get_dram_map(int n, uint64_t *dram_map)
{
uint64_t bridgebase, base, lim;
uint32_t val;
unsigned int barreg, limreg, xlatreg;
int i, node, rv;
/* Look only at mapping on Node 0, we don't handle crazy configs */
bridgebase = nlm_get_bridge_regbase(0);
rv = 0;
for (i = 0; i < 8; i++) {
if (cpu_is_xlp9xx()) {
barreg = BRIDGE_9XX_DRAM_BAR(i);
limreg = BRIDGE_9XX_DRAM_LIMIT(i);
xlatreg = BRIDGE_9XX_DRAM_NODE_TRANSLN(i);
} else {
barreg = BRIDGE_DRAM_BAR(i);
limreg = BRIDGE_DRAM_LIMIT(i);
xlatreg = BRIDGE_DRAM_NODE_TRANSLN(i);
}
if (n >= 0) {
/* node specified, get node mapping of BAR */
val = nlm_read_bridge_reg(bridgebase, xlatreg);
node = (val >> 1) & 0x3;
if (n != node)
continue;
}
val = nlm_read_bridge_reg(bridgebase, barreg);
val = (val >> 12) & 0xfffff;
base = (uint64_t) val << 20;
val = nlm_read_bridge_reg(bridgebase, limreg);
val = (val >> 12) & 0xfffff;
if (val == 0) /* BAR not used */
continue;
lim = ((uint64_t)val + 1) << 20;
dram_map[rv] = base;
dram_map[rv + 1] = lim;
rv += 2;
}
return rv;
}
|