1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Unified implementation of memcpy, memmove and the __copy_user backend.
*
* Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
* Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
* Copyright (C) 2002 Broadcom, Inc.
* memcpy/copy_user author: Mark Vandevoorde
*
* Mnemonic names for arguments to memcpy/__copy_user
*/
#include <asm/asm.h>
#include <asm/asm-offsets.h>
#include <asm/export.h>
#include <asm/regdef.h>
#define dst a0
#define src a1
#define len a2
/*
* Spec
*
* memcpy copies len bytes from src to dst and sets v0 to dst.
* It assumes that
* - src and dst don't overlap
* - src is readable
* - dst is writable
* memcpy uses the standard calling convention
*
* __copy_user copies up to len bytes from src to dst and sets a2 (len) to
* the number of uncopied bytes due to an exception caused by a read or write.
* __copy_user assumes that src and dst don't overlap, and that the call is
* implementing one of the following:
* copy_to_user
* - src is readable (no exceptions when reading src)
* copy_from_user
* - dst is writable (no exceptions when writing dst)
* __copy_user uses a non-standard calling convention; see
* arch/mips/include/asm/uaccess.h
*
* When an exception happens on a load, the handler must
# ensure that all of the destination buffer is overwritten to prevent
* leaking information to user mode programs.
*/
/*
* Implementation
*/
/*
* The exception handler for loads requires that:
* 1- AT contain the address of the byte just past the end of the source
* of the copy,
* 2- src_entry <= src < AT, and
* 3- (dst - src) == (dst_entry - src_entry),
* The _entry suffix denotes values when __copy_user was called.
*
* (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
* (2) is met by incrementing src by the number of bytes copied
* (3) is met by not doing loads between a pair of increments of dst and src
*
* The exception handlers for stores adjust len (if necessary) and return.
* These handlers do not need to overwrite any data.
*
* For __rmemcpy and memmove an exception is always a kernel bug, therefore
* they're not protected.
*/
#define EXC(inst_reg,addr,handler) \
9: inst_reg, addr; \
.section __ex_table,"a"; \
PTR 9b, handler; \
.previous
/*
* Only on the 64-bit kernel we can made use of 64-bit registers.
*/
#define LOAD ld
#define LOADL ldl
#define LOADR ldr
#define STOREL sdl
#define STORER sdr
#define STORE sd
#define ADD daddu
#define SUB dsubu
#define SRL dsrl
#define SRA dsra
#define SLL dsll
#define SLLV dsllv
#define SRLV dsrlv
#define NBYTES 8
#define LOG_NBYTES 3
/*
* As we are sharing code base with the mips32 tree (which use the o32 ABI
* register definitions). We need to redefine the register definitions from
* the n64 ABI register naming to the o32 ABI register naming.
*/
#undef t0
#undef t1
#undef t2
#undef t3
#define t0 $8
#define t1 $9
#define t2 $10
#define t3 $11
#define t4 $12
#define t5 $13
#define t6 $14
#define t7 $15
#ifdef CONFIG_CPU_LITTLE_ENDIAN
#define LDFIRST LOADR
#define LDREST LOADL
#define STFIRST STORER
#define STREST STOREL
#define SHIFT_DISCARD SLLV
#else
#define LDFIRST LOADL
#define LDREST LOADR
#define STFIRST STOREL
#define STREST STORER
#define SHIFT_DISCARD SRLV
#endif
#define FIRST(unit) ((unit)*NBYTES)
#define REST(unit) (FIRST(unit)+NBYTES-1)
#define UNIT(unit) FIRST(unit)
#define ADDRMASK (NBYTES-1)
.text
.set noreorder
.set noat
/*
* t7 is used as a flag to note inatomic mode.
*/
LEAF(__copy_user_inatomic)
EXPORT_SYMBOL(__copy_user_inatomic)
b __copy_user_common
li t7, 1
END(__copy_user_inatomic)
/*
* A combined memcpy/__copy_user
* __copy_user sets len to 0 for success; else to an upper bound of
* the number of uncopied bytes.
* memcpy sets v0 to dst.
*/
.align 5
LEAF(memcpy) /* a0=dst a1=src a2=len */
EXPORT_SYMBOL(memcpy)
move v0, dst /* return value */
__memcpy:
FEXPORT(__copy_user)
EXPORT_SYMBOL(__copy_user)
li t7, 0 /* not inatomic */
__copy_user_common:
/*
* Note: dst & src may be unaligned, len may be 0
* Temps
*/
#
# Octeon doesn't care if the destination is unaligned. The hardware
# can fix it faster than we can special case the assembly.
#
pref 0, 0(src)
sltu t0, len, NBYTES # Check if < 1 word
bnez t0, copy_bytes_checklen
and t0, src, ADDRMASK # Check if src unaligned
bnez t0, src_unaligned
sltu t0, len, 4*NBYTES # Check if < 4 words
bnez t0, less_than_4units
sltu t0, len, 8*NBYTES # Check if < 8 words
bnez t0, less_than_8units
sltu t0, len, 16*NBYTES # Check if < 16 words
bnez t0, cleanup_both_aligned
sltu t0, len, 128+1 # Check if len < 129
bnez t0, 1f # Skip prefetch if len is too short
sltu t0, len, 256+1 # Check if len < 257
bnez t0, 1f # Skip prefetch if len is too short
pref 0, 128(src) # We must not prefetch invalid addresses
#
# This is where we loop if there is more than 128 bytes left
2: pref 0, 256(src) # We must not prefetch invalid addresses
#
# This is where we loop if we can't prefetch anymore
1:
EXC( LOAD t0, UNIT(0)(src), l_exc)
EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
SUB len, len, 16*NBYTES
EXC( STORE t0, UNIT(0)(dst), s_exc_p16u)
EXC( STORE t1, UNIT(1)(dst), s_exc_p15u)
EXC( STORE t2, UNIT(2)(dst), s_exc_p14u)
EXC( STORE t3, UNIT(3)(dst), s_exc_p13u)
EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
EXC( STORE t0, UNIT(4)(dst), s_exc_p12u)
EXC( STORE t1, UNIT(5)(dst), s_exc_p11u)
EXC( STORE t2, UNIT(6)(dst), s_exc_p10u)
ADD src, src, 16*NBYTES
EXC( STORE t3, UNIT(7)(dst), s_exc_p9u)
ADD dst, dst, 16*NBYTES
EXC( LOAD t0, UNIT(-8)(src), l_exc_copy)
EXC( LOAD t1, UNIT(-7)(src), l_exc_copy)
EXC( LOAD t2, UNIT(-6)(src), l_exc_copy)
EXC( LOAD t3, UNIT(-5)(src), l_exc_copy)
EXC( STORE t0, UNIT(-8)(dst), s_exc_p8u)
EXC( STORE t1, UNIT(-7)(dst), s_exc_p7u)
EXC( STORE t2, UNIT(-6)(dst), s_exc_p6u)
EXC( STORE t3, UNIT(-5)(dst), s_exc_p5u)
EXC( LOAD t0, UNIT(-4)(src), l_exc_copy)
EXC( LOAD t1, UNIT(-3)(src), l_exc_copy)
EXC( LOAD t2, UNIT(-2)(src), l_exc_copy)
EXC( LOAD t3, UNIT(-1)(src), l_exc_copy)
EXC( STORE t0, UNIT(-4)(dst), s_exc_p4u)
EXC( STORE t1, UNIT(-3)(dst), s_exc_p3u)
EXC( STORE t2, UNIT(-2)(dst), s_exc_p2u)
EXC( STORE t3, UNIT(-1)(dst), s_exc_p1u)
sltu t0, len, 256+1 # See if we can prefetch more
beqz t0, 2b
sltu t0, len, 128 # See if we can loop more time
beqz t0, 1b
nop
#
# Jump here if there are less than 16*NBYTES left.
#
cleanup_both_aligned:
beqz len, done
sltu t0, len, 8*NBYTES
bnez t0, less_than_8units
nop
EXC( LOAD t0, UNIT(0)(src), l_exc)
EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
SUB len, len, 8*NBYTES
EXC( STORE t0, UNIT(0)(dst), s_exc_p8u)
EXC( STORE t1, UNIT(1)(dst), s_exc_p7u)
EXC( STORE t2, UNIT(2)(dst), s_exc_p6u)
EXC( STORE t3, UNIT(3)(dst), s_exc_p5u)
EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
EXC( STORE t0, UNIT(4)(dst), s_exc_p4u)
EXC( STORE t1, UNIT(5)(dst), s_exc_p3u)
EXC( STORE t2, UNIT(6)(dst), s_exc_p2u)
EXC( STORE t3, UNIT(7)(dst), s_exc_p1u)
ADD src, src, 8*NBYTES
beqz len, done
ADD dst, dst, 8*NBYTES
#
# Jump here if there are less than 8*NBYTES left.
#
less_than_8units:
sltu t0, len, 4*NBYTES
bnez t0, less_than_4units
nop
EXC( LOAD t0, UNIT(0)(src), l_exc)
EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
SUB len, len, 4*NBYTES
EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
ADD src, src, 4*NBYTES
beqz len, done
ADD dst, dst, 4*NBYTES
#
# Jump here if there are less than 4*NBYTES left. This means
# we may need to copy up to 3 NBYTES words.
#
less_than_4units:
sltu t0, len, 1*NBYTES
bnez t0, copy_bytes_checklen
nop
#
# 1) Copy NBYTES, then check length again
#
EXC( LOAD t0, 0(src), l_exc)
SUB len, len, NBYTES
sltu t1, len, 8
EXC( STORE t0, 0(dst), s_exc_p1u)
ADD src, src, NBYTES
bnez t1, copy_bytes_checklen
ADD dst, dst, NBYTES
#
# 2) Copy NBYTES, then check length again
#
EXC( LOAD t0, 0(src), l_exc)
SUB len, len, NBYTES
sltu t1, len, 8
EXC( STORE t0, 0(dst), s_exc_p1u)
ADD src, src, NBYTES
bnez t1, copy_bytes_checklen
ADD dst, dst, NBYTES
#
# 3) Copy NBYTES, then check length again
#
EXC( LOAD t0, 0(src), l_exc)
SUB len, len, NBYTES
ADD src, src, NBYTES
ADD dst, dst, NBYTES
b copy_bytes_checklen
EXC( STORE t0, -8(dst), s_exc_p1u)
src_unaligned:
#define rem t8
SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter
beqz t0, cleanup_src_unaligned
and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES
1:
/*
* Avoid consecutive LD*'s to the same register since some mips
* implementations can't issue them in the same cycle.
* It's OK to load FIRST(N+1) before REST(N) because the two addresses
* are to the same unit (unless src is aligned, but it's not).
*/
EXC( LDFIRST t0, FIRST(0)(src), l_exc)
EXC( LDFIRST t1, FIRST(1)(src), l_exc_copy)
SUB len, len, 4*NBYTES
EXC( LDREST t0, REST(0)(src), l_exc_copy)
EXC( LDREST t1, REST(1)(src), l_exc_copy)
EXC( LDFIRST t2, FIRST(2)(src), l_exc_copy)
EXC( LDFIRST t3, FIRST(3)(src), l_exc_copy)
EXC( LDREST t2, REST(2)(src), l_exc_copy)
EXC( LDREST t3, REST(3)(src), l_exc_copy)
ADD src, src, 4*NBYTES
EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
bne len, rem, 1b
ADD dst, dst, 4*NBYTES
cleanup_src_unaligned:
beqz len, done
and rem, len, NBYTES-1 # rem = len % NBYTES
beq rem, len, copy_bytes
nop
1:
EXC( LDFIRST t0, FIRST(0)(src), l_exc)
EXC( LDREST t0, REST(0)(src), l_exc_copy)
SUB len, len, NBYTES
EXC( STORE t0, 0(dst), s_exc_p1u)
ADD src, src, NBYTES
bne len, rem, 1b
ADD dst, dst, NBYTES
copy_bytes_checklen:
beqz len, done
nop
copy_bytes:
/* 0 < len < NBYTES */
#define COPY_BYTE(N) \
EXC( lb t0, N(src), l_exc); \
SUB len, len, 1; \
beqz len, done; \
EXC( sb t0, N(dst), s_exc_p1)
COPY_BYTE(0)
COPY_BYTE(1)
COPY_BYTE(2)
COPY_BYTE(3)
COPY_BYTE(4)
COPY_BYTE(5)
EXC( lb t0, NBYTES-2(src), l_exc)
SUB len, len, 1
jr ra
EXC( sb t0, NBYTES-2(dst), s_exc_p1)
done:
jr ra
nop
END(memcpy)
l_exc_copy:
/*
* Copy bytes from src until faulting load address (or until a
* lb faults)
*
* When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
* may be more than a byte beyond the last address.
* Hence, the lb below may get an exception.
*
* Assumes src < THREAD_BUADDR($28)
*/
LOAD t0, TI_TASK($28)
LOAD t0, THREAD_BUADDR(t0)
1:
EXC( lb t1, 0(src), l_exc)
ADD src, src, 1
sb t1, 0(dst) # can't fault -- we're copy_from_user
bne src, t0, 1b
ADD dst, dst, 1
l_exc:
LOAD t0, TI_TASK($28)
LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address
SUB len, AT, t0 # len number of uncopied bytes
bnez t7, 2f /* Skip the zeroing out part if inatomic */
/*
* Here's where we rely on src and dst being incremented in tandem,
* See (3) above.
* dst += (fault addr - src) to put dst at first byte to clear
*/
ADD dst, t0 # compute start address in a1
SUB dst, src
/*
* Clear len bytes starting at dst. Can't call __bzero because it
* might modify len. An inefficient loop for these rare times...
*/
beqz len, done
SUB src, len, 1
1: sb zero, 0(dst)
ADD dst, dst, 1
bnez src, 1b
SUB src, src, 1
2: jr ra
nop
#define SEXC(n) \
s_exc_p ## n ## u: \
jr ra; \
ADD len, len, n*NBYTES
SEXC(16)
SEXC(15)
SEXC(14)
SEXC(13)
SEXC(12)
SEXC(11)
SEXC(10)
SEXC(9)
SEXC(8)
SEXC(7)
SEXC(6)
SEXC(5)
SEXC(4)
SEXC(3)
SEXC(2)
SEXC(1)
s_exc_p1:
jr ra
ADD len, len, 1
s_exc:
jr ra
nop
.align 5
LEAF(memmove)
EXPORT_SYMBOL(memmove)
ADD t0, a0, a2
ADD t1, a1, a2
sltu t0, a1, t0 # dst + len <= src -> memcpy
sltu t1, a0, t1 # dst >= src + len -> memcpy
and t0, t1
beqz t0, __memcpy
move v0, a0 /* return value */
beqz a2, r_out
END(memmove)
/* fall through to __rmemcpy */
LEAF(__rmemcpy) /* a0=dst a1=src a2=len */
sltu t0, a1, a0
beqz t0, r_end_bytes_up # src >= dst
nop
ADD a0, a2 # dst = dst + len
ADD a1, a2 # src = src + len
r_end_bytes:
lb t0, -1(a1)
SUB a2, a2, 0x1
sb t0, -1(a0)
SUB a1, a1, 0x1
bnez a2, r_end_bytes
SUB a0, a0, 0x1
r_out:
jr ra
move a2, zero
r_end_bytes_up:
lb t0, (a1)
SUB a2, a2, 0x1
sb t0, (a0)
ADD a1, a1, 0x1
bnez a2, r_end_bytes_up
ADD a0, a0, 0x1
jr ra
move a2, zero
END(__rmemcpy)
|