1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
/*
* (C) Dominik Brodowski <linux@brodo.de> 2003
*
* Driver to use the Power Management Timer (PMTMR) available in some
* southbridges as primary timing source for the Linux kernel.
*
* Based on parts of linux/drivers/acpi/hardware/hwtimer.c, timer_pit.c,
* timer_hpet.c, and on Arjan van de Ven's implementation for 2.4.
*
* This file is licensed under the GPL v2.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <asm/types.h>
#include <asm/timer.h>
#include <asm/smp.h>
#include <asm/io.h>
#include <asm/arch_hooks.h>
#include <linux/timex.h>
#include "mach_timer.h"
/* Number of PMTMR ticks expected during calibration run */
#define PMTMR_TICKS_PER_SEC 3579545
#define PMTMR_EXPECTED_RATE \
((CALIBRATE_LATCH * (PMTMR_TICKS_PER_SEC >> 10)) / (CLOCK_TICK_RATE>>10))
/* The I/O port the PMTMR resides at.
* The location is detected during setup_arch(),
* in arch/i386/acpi/boot.c */
u32 pmtmr_ioport = 0;
/* value of the Power timer at last timer interrupt */
static u32 offset_tick;
static u32 offset_delay;
static unsigned long long monotonic_base;
static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED;
#define ACPI_PM_MASK 0xFFFFFF /* limit it to 24 bits */
static int pmtmr_need_workaround __read_mostly = 1;
/*helper function to safely read acpi pm timesource*/
static inline u32 read_pmtmr(void)
{
if (pmtmr_need_workaround) {
u32 v1, v2, v3;
/* It has been reported that because of various broken
* chipsets (ICH4, PIIX4 and PIIX4E) where the ACPI PM time
* source is not latched, so you must read it multiple
* times to insure a safe value is read.
*/
do {
v1 = inl(pmtmr_ioport);
v2 = inl(pmtmr_ioport);
v3 = inl(pmtmr_ioport);
} while ((v1 > v2 && v1 < v3) || (v2 > v3 && v2 < v1)
|| (v3 > v1 && v3 < v2));
/* mask the output to 24 bits */
return v2 & ACPI_PM_MASK;
}
return inl(pmtmr_ioport) & ACPI_PM_MASK;
}
/*
* Some boards have the PMTMR running way too fast. We check
* the PMTMR rate against PIT channel 2 to catch these cases.
*/
static int verify_pmtmr_rate(void)
{
u32 value1, value2;
unsigned long count, delta;
mach_prepare_counter();
value1 = read_pmtmr();
mach_countup(&count);
value2 = read_pmtmr();
delta = (value2 - value1) & ACPI_PM_MASK;
/* Check that the PMTMR delta is within 5% of what we expect */
if (delta < (PMTMR_EXPECTED_RATE * 19) / 20 ||
delta > (PMTMR_EXPECTED_RATE * 21) / 20) {
printk(KERN_INFO "PM-Timer running at invalid rate: %lu%% of normal - aborting.\n", 100UL * delta / PMTMR_EXPECTED_RATE);
return -1;
}
return 0;
}
static int init_pmtmr(char* override)
{
u32 value1, value2;
unsigned int i;
if (override[0] && strncmp(override,"pmtmr",5))
return -ENODEV;
if (!pmtmr_ioport)
return -ENODEV;
/* we use the TSC for delay_pmtmr, so make sure it exists */
if (!cpu_has_tsc)
return -ENODEV;
/* "verify" this timing source */
value1 = read_pmtmr();
for (i = 0; i < 10000; i++) {
value2 = read_pmtmr();
if (value2 == value1)
continue;
if (value2 > value1)
goto pm_good;
if ((value2 < value1) && ((value2) < 0xFFF))
goto pm_good;
printk(KERN_INFO "PM-Timer had inconsistent results: 0x%#x, 0x%#x - aborting.\n", value1, value2);
return -EINVAL;
}
printk(KERN_INFO "PM-Timer had no reasonable result: 0x%#x - aborting.\n", value1);
return -ENODEV;
pm_good:
if (verify_pmtmr_rate() != 0)
return -ENODEV;
init_cpu_khz();
return 0;
}
static inline u32 cyc2us(u32 cycles)
{
/* The Power Management Timer ticks at 3.579545 ticks per microsecond.
* 1 / PM_TIMER_FREQUENCY == 0.27936511 =~ 286/1024 [error: 0.024%]
*
* Even with HZ = 100, delta is at maximum 35796 ticks, so it can
* easily be multiplied with 286 (=0x11E) without having to fear
* u32 overflows.
*/
cycles *= 286;
return (cycles >> 10);
}
/*
* this gets called during each timer interrupt
* - Called while holding the writer xtime_lock
*/
static void mark_offset_pmtmr(void)
{
u32 lost, delta, last_offset;
static int first_run = 1;
last_offset = offset_tick;
write_seqlock(&monotonic_lock);
offset_tick = read_pmtmr();
/* calculate tick interval */
delta = (offset_tick - last_offset) & ACPI_PM_MASK;
/* convert to usecs */
delta = cyc2us(delta);
/* update the monotonic base value */
monotonic_base += delta * NSEC_PER_USEC;
write_sequnlock(&monotonic_lock);
/* convert to ticks */
delta += offset_delay;
lost = delta / (USEC_PER_SEC / HZ);
offset_delay = delta % (USEC_PER_SEC / HZ);
/* compensate for lost ticks */
if (lost >= 2)
jiffies_64 += lost - 1;
/* don't calculate delay for first run,
or if we've got less then a tick */
if (first_run || (lost < 1)) {
first_run = 0;
offset_delay = 0;
}
}
static int pmtmr_resume(void)
{
write_seqlock(&monotonic_lock);
/* Assume this is the last mark offset time */
offset_tick = read_pmtmr();
write_sequnlock(&monotonic_lock);
return 0;
}
static unsigned long long monotonic_clock_pmtmr(void)
{
u32 last_offset, this_offset;
unsigned long long base, ret;
unsigned seq;
/* atomically read monotonic base & last_offset */
do {
seq = read_seqbegin(&monotonic_lock);
last_offset = offset_tick;
base = monotonic_base;
} while (read_seqretry(&monotonic_lock, seq));
/* Read the pmtmr */
this_offset = read_pmtmr();
/* convert to nanoseconds */
ret = (this_offset - last_offset) & ACPI_PM_MASK;
ret = base + (cyc2us(ret) * NSEC_PER_USEC);
return ret;
}
static void delay_pmtmr(unsigned long loops)
{
unsigned long bclock, now;
rdtscl(bclock);
do
{
rep_nop();
rdtscl(now);
} while ((now-bclock) < loops);
}
/*
* get the offset (in microseconds) from the last call to mark_offset()
* - Called holding a reader xtime_lock
*/
static unsigned long get_offset_pmtmr(void)
{
u32 now, offset, delta = 0;
offset = offset_tick;
now = read_pmtmr();
delta = (now - offset)&ACPI_PM_MASK;
return (unsigned long) offset_delay + cyc2us(delta);
}
/* acpi timer_opts struct */
static struct timer_opts timer_pmtmr = {
.name = "pmtmr",
.mark_offset = mark_offset_pmtmr,
.get_offset = get_offset_pmtmr,
.monotonic_clock = monotonic_clock_pmtmr,
.delay = delay_pmtmr,
.read_timer = read_timer_tsc,
.resume = pmtmr_resume,
};
struct init_timer_opts __initdata timer_pmtmr_init = {
.init = init_pmtmr,
.opts = &timer_pmtmr,
};
#ifdef CONFIG_PCI
/*
* PIIX4 Errata:
*
* The power management timer may return improper results when read.
* Although the timer value settles properly after incrementing,
* while incrementing there is a 3 ns window every 69.8 ns where the
* timer value is indeterminate (a 4.2% chance that the data will be
* incorrect when read). As a result, the ACPI free running count up
* timer specification is violated due to erroneous reads.
*/
static int __init pmtmr_bug_check(void)
{
static struct pci_device_id gray_list[] __initdata = {
/* these chipsets may have bug. */
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_82801DB_0) },
{ },
};
struct pci_dev *dev;
int pmtmr_has_bug = 0;
u8 rev;
if (cur_timer != &timer_pmtmr || !pmtmr_need_workaround)
return 0;
dev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_82371AB_3, NULL);
if (dev) {
pci_read_config_byte(dev, PCI_REVISION_ID, &rev);
/* the bug has been fixed in PIIX4M */
if (rev < 3) {
printk(KERN_WARNING "* Found PM-Timer Bug on this "
"chipset. Due to workarounds for a bug,\n"
"* this time source is slow. Consider trying "
"other time sources (clock=)\n");
pmtmr_has_bug = 1;
}
pci_dev_put(dev);
}
if (pci_dev_present(gray_list)) {
printk(KERN_WARNING "* This chipset may have PM-Timer Bug. Due"
" to workarounds for a bug,\n"
"* this time source is slow. If you are sure your timer"
" does not have\n"
"* this bug, please use \"pmtmr_good\" to disable the "
"workaround\n");
pmtmr_has_bug = 1;
}
if (!pmtmr_has_bug)
pmtmr_need_workaround = 0;
return 0;
}
device_initcall(pmtmr_bug_check);
#endif
static int __init pmtr_good_setup(char *__str)
{
pmtmr_need_workaround = 0;
return 1;
}
__setup("pmtmr_good", pmtr_good_setup);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Dominik Brodowski <linux@brodo.de>");
MODULE_DESCRIPTION("Power Management Timer (PMTMR) as primary timing source for x86");
|