summaryrefslogtreecommitdiff
path: root/arch/arm/mach-vexpress/dcscb.c
blob: 788495d35cf9ea6d920a69a8fd6cc2a7b46fd7c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*
 * arch/arm/mach-vexpress/dcscb.c - Dual Cluster System Configuration Block
 *
 * Created by:	Nicolas Pitre, May 2012
 * Copyright:	(C) 2012-2013  Linaro Limited
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/of_address.h>
#include <linux/vexpress.h>
#include <linux/arm-cci.h>

#include <asm/mcpm.h>
#include <asm/proc-fns.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/cp15.h>


#define RST_HOLD0	0x0
#define RST_HOLD1	0x4
#define SYS_SWRESET	0x8
#define RST_STAT0	0xc
#define RST_STAT1	0x10
#define EAG_CFG_R	0x20
#define EAG_CFG_W	0x24
#define KFC_CFG_R	0x28
#define KFC_CFG_W	0x2c
#define DCS_CFG_R	0x30

/*
 * We can't use regular spinlocks. In the switcher case, it is possible
 * for an outbound CPU to call power_down() while its inbound counterpart
 * is already live using the same logical CPU number which trips lockdep
 * debugging.
 */
static arch_spinlock_t dcscb_lock = __ARCH_SPIN_LOCK_UNLOCKED;

static void __iomem *dcscb_base;
static int dcscb_use_count[4][2];
static int dcscb_allcpus_mask[2];

static int dcscb_power_up(unsigned int cpu, unsigned int cluster)
{
	unsigned int rst_hold, cpumask = (1 << cpu);
	unsigned int all_mask = dcscb_allcpus_mask[cluster];

	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
	if (cpu >= 4 || cluster >= 2)
		return -EINVAL;

	/*
	 * Since this is called with IRQs enabled, and no arch_spin_lock_irq
	 * variant exists, we need to disable IRQs manually here.
	 */
	local_irq_disable();
	arch_spin_lock(&dcscb_lock);

	dcscb_use_count[cpu][cluster]++;
	if (dcscb_use_count[cpu][cluster] == 1) {
		rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
		if (rst_hold & (1 << 8)) {
			/* remove cluster reset and add individual CPU's reset */
			rst_hold &= ~(1 << 8);
			rst_hold |= all_mask;
		}
		rst_hold &= ~(cpumask | (cpumask << 4));
		writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
	} else if (dcscb_use_count[cpu][cluster] != 2) {
		/*
		 * The only possible values are:
		 * 0 = CPU down
		 * 1 = CPU (still) up
		 * 2 = CPU requested to be up before it had a chance
		 *     to actually make itself down.
		 * Any other value is a bug.
		 */
		BUG();
	}

	arch_spin_unlock(&dcscb_lock);
	local_irq_enable();

	return 0;
}

static void dcscb_power_down(void)
{
	unsigned int mpidr, cpu, cluster, rst_hold, cpumask, all_mask;
	bool last_man = false, skip_wfi = false;

	mpidr = read_cpuid_mpidr();
	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
	cpumask = (1 << cpu);
	all_mask = dcscb_allcpus_mask[cluster];

	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
	BUG_ON(cpu >= 4 || cluster >= 2);

	__mcpm_cpu_going_down(cpu, cluster);

	arch_spin_lock(&dcscb_lock);
	BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
	dcscb_use_count[cpu][cluster]--;
	if (dcscb_use_count[cpu][cluster] == 0) {
		rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
		rst_hold |= cpumask;
		if (((rst_hold | (rst_hold >> 4)) & all_mask) == all_mask) {
			rst_hold |= (1 << 8);
			last_man = true;
		}
		writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
	} else if (dcscb_use_count[cpu][cluster] == 1) {
		/*
		 * A power_up request went ahead of us.
		 * Even if we do not want to shut this CPU down,
		 * the caller expects a certain state as if the WFI
		 * was aborted.  So let's continue with cache cleaning.
		 */
		skip_wfi = true;
	} else
		BUG();

	if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
		arch_spin_unlock(&dcscb_lock);

		/* Flush all cache levels for this cluster. */
		v7_exit_coherency_flush(all);

		/*
		 * A full outer cache flush could be needed at this point
		 * on platforms with such a cache, depending on where the
		 * outer cache sits. In some cases the notion of a "last
		 * cluster standing" would need to be implemented if the
		 * outer cache is shared across clusters. In any case, when
		 * the outer cache needs flushing, there is no concurrent
		 * access to the cache controller to worry about and no
		 * special locking besides what is already provided by the
		 * MCPM state machinery is needed.
		 */

		/*
		 * Disable cluster-level coherency by masking
		 * incoming snoops and DVM messages:
		 */
		cci_disable_port_by_cpu(mpidr);

		__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
	} else {
		arch_spin_unlock(&dcscb_lock);

		/* Disable and flush the local CPU cache. */
		v7_exit_coherency_flush(louis);
	}

	__mcpm_cpu_down(cpu, cluster);

	/* Now we are prepared for power-down, do it: */
	dsb();
	if (!skip_wfi)
		wfi();

	/* Not dead at this point?  Let our caller cope. */
}

static const struct mcpm_platform_ops dcscb_power_ops = {
	.power_up	= dcscb_power_up,
	.power_down	= dcscb_power_down,
};

static void __init dcscb_usage_count_init(void)
{
	unsigned int mpidr, cpu, cluster;

	mpidr = read_cpuid_mpidr();
	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);

	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
	BUG_ON(cpu >= 4 || cluster >= 2);
	dcscb_use_count[cpu][cluster] = 1;
}

extern void dcscb_power_up_setup(unsigned int affinity_level);

static int __init dcscb_init(void)
{
	struct device_node *node;
	unsigned int cfg;
	int ret;

	if (!cci_probed())
		return -ENODEV;

	node = of_find_compatible_node(NULL, NULL, "arm,rtsm,dcscb");
	if (!node)
		return -ENODEV;
	dcscb_base = of_iomap(node, 0);
	if (!dcscb_base)
		return -EADDRNOTAVAIL;
	cfg = readl_relaxed(dcscb_base + DCS_CFG_R);
	dcscb_allcpus_mask[0] = (1 << (((cfg >> 16) >> (0 << 2)) & 0xf)) - 1;
	dcscb_allcpus_mask[1] = (1 << (((cfg >> 16) >> (1 << 2)) & 0xf)) - 1;
	dcscb_usage_count_init();

	ret = mcpm_platform_register(&dcscb_power_ops);
	if (!ret)
		ret = mcpm_sync_init(dcscb_power_up_setup);
	if (ret) {
		iounmap(dcscb_base);
		return ret;
	}

	pr_info("VExpress DCSCB support installed\n");

	/*
	 * Future entries into the kernel can now go
	 * through the cluster entry vectors.
	 */
	vexpress_flags_set(virt_to_phys(mcpm_entry_point));

	return 0;
}

early_initcall(dcscb_init);