summaryrefslogtreecommitdiff
path: root/kernel/power/energy_model.c
AgeCommit message (Collapse)Author
2021-03-23PM: EM: postpone creating the debugfs dir till fs_initcallLukasz Luba
The debugfs directory '/sys/kernel/debug/energy_model' is needed before the Energy Model registration can happen. With the recent change in debugfs subsystem it's not allowed to create this directory at early stage (core_initcall). Thus creating this directory would fail. Postpone the creation of the EM debug dir to later stage: fs_initcall. It should be safe since all clients: CPUFreq drivers, Devfreq drivers will be initialized in later stages. The custom debug log below prints the time of creation the EM debug dir at fs_initcall and successful registration of EMs at later stages. [ 1.505717] energy_model: creating rootdir [ 3.698307] cpu cpu0: EM: created perf domain [ 3.709022] cpu cpu1: EM: created perf domain Fixes: 56348560d495 ("debugfs: do not attempt to create a new file before the filesystem is initalized") Reported-by: Ionela Voinescu <ionela.voinescu@arm.com> Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-11-10PM: EM: update the comments related to power scaleLukasz Luba
The Energy Model supports power values expressed in milli-Watts or in an 'abstract scale'. Update the related comments is the code to reflect that state. Reviewed-by: Quentin Perret <qperret@google.com> Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-11-10PM: EM: Add a flag indicating units of power values in Energy ModelLukasz Luba
There are different platforms and devices which might use different scale for the power values. Kernel sub-systems might need to check if all Energy Model (EM) devices are using the same scale. Address that issue and store the information inside EM for each device. Thanks to that they can be easily compared and proper action triggered. Suggested-by: Daniel Lezcano <daniel.lezcano@linaro.org> Reviewed-by: Quentin Perret <qperret@google.com> Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-06-24PM / EM: remove em_register_perf_domainLukasz Luba
Remove old function em_register_perf_domain which is no longer needed. There is em_dev_register_perf_domain that covers old use cases and new as well. Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Acked-by: Quentin Perret <qperret@google.com> Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-06-24PM / EM: add support for other devices than CPUs in Energy ModelLukasz Luba
Add support for other devices than CPUs. The registration function does not require a valid cpumask pointer and is ready to handle new devices. Some of the internal structures has been reorganized in order to keep consistent view (like removing per_cpu pd pointers). Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-06-24PM / EM: update callback structure and add device pointerLukasz Luba
The Energy Model framework is going to support devices other that CPUs. In order to make this happen change the callback function and add pointer to a device as an argument. Update the related users to use new function and new callback from the Energy Model. Acked-by: Quentin Perret <qperret@google.com> Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-06-24PM / EM: introduce em_dev_register_perf_domain functionLukasz Luba
Add now function in the Energy Model framework which is going to support new devices. This function will help in transition and make it smoother. For now it still checks if the cpumask is a valid pointer, which will be removed later when the new structures and infrastructure will be ready. Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Acked-by: Quentin Perret <qperret@google.com> Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-06-24PM / EM: change naming convention from 'capacity' to 'performance'Lukasz Luba
The Energy Model uses concept of performance domain and capacity states in order to calculate power used by CPUs. Change naming convention from capacity to performance state would enable wider usage in future, e.g. upcoming support for other devices other than CPUs. Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Acked-by: Quentin Perret <qperret@google.com> Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-06-24sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()Vincent Guittot
The 'struct sched_domain *sd' parameter to arch_scale_cpu_capacity() is unused since commit: 765d0af19f5f ("sched/topology: Remove the ::smt_gain field from 'struct sched_domain'") Remove it. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: gregkh@linuxfoundation.org Cc: linux@armlinux.org.uk Cc: quentin.perret@arm.com Cc: rafael@kernel.org Link: https://lkml.kernel.org/r/1560783617-5827-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-23PM / EM: Expose the Energy Model in debugfsQuentin Perret
The recently introduced Energy Model (EM) framework manages power cost tables of CPUs. These tables are currently only visible from kernel space. However, in order to debug the behaviour of subsystems that use the EM (EAS for example), it is often required to know what the power costs are from userspace. For this reason, introduce under /sys/kernel/debug/energy_model a set of directories representing the performance domains of the system. Each performance domain contains a set of sub-directories representing the different capacity states (cs) and their attributes, as well as a file exposing the related CPUs. The resulting hierarchy is as follows on Arm juno r0 for example: /sys/kernel/debug/energy_model ├── pd0 │   ├── cpus │   ├── cs:450000 │   │   ├── cost │   │   ├── frequency │   │   └── power │   ├── cs:575000 │   │   ├── cost │   │   ├── frequency │   │   └── power │   ├── cs:700000 │   │   ├── cost │   │   ├── frequency │   │   └── power │   ├── cs:775000 │   │   ├── cost │   │   ├── frequency │   │   └── power │   └── cs:850000 │   ├── cost │   ├── frequency │   └── power └── pd1 ├── cpus ├── cs:1100000 │   ├── cost │   ├── frequency │   └── power ├── cs:450000 │   ├── cost │   ├── frequency │   └── power ├── cs:625000 │   ├── cost │   ├── frequency │   └── power ├── cs:800000 │   ├── cost │   ├── frequency │   └── power └── cs:950000 ├── cost ├── frequency └── power Signed-off-by: Quentin Perret <quentin.perret@arm.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-12-11PM: Introduce an Energy Model management frameworkQuentin Perret
Several subsystems in the kernel (task scheduler and/or thermal at the time of writing) can benefit from knowing about the energy consumed by CPUs. Yet, this information can come from different sources (DT or firmware for example), in different formats, hence making it hard to exploit without a standard API. As an attempt to address this, introduce a centralized Energy Model (EM) management framework which aggregates the power values provided by drivers into a table for each performance domain in the system. The power cost tables are made available to interested clients (e.g. task scheduler or thermal) via platform-agnostic APIs. The overall design is represented by the diagram below (focused on Arm-related drivers as an example, but applicable to any architecture): +---------------+ +-----------------+ +-------------+ | Thermal (IPA) | | Scheduler (EAS) | | Other | +---------------+ +-----------------+ +-------------+ | | em_pd_energy() | | | em_cpu_get() | +-----------+ | +--------+ | | | v v v +---------------------+ | | | Energy Model | | | | Framework | | | +---------------------+ ^ ^ ^ | | | em_register_perf_domain() +----------+ | +---------+ | | | +---------------+ +---------------+ +--------------+ | cpufreq-dt | | arm_scmi | | Other | +---------------+ +---------------+ +--------------+ ^ ^ ^ | | | +--------------+ +---------------+ +--------------+ | Device Tree | | Firmware | | ? | +--------------+ +---------------+ +--------------+ Drivers (typically, but not limited to, CPUFreq drivers) can register data in the EM framework using the em_register_perf_domain() API. The calling driver must provide a callback function with a standardized signature that will be used by the EM framework to build the power cost tables of the performance domain. This design should offer a lot of flexibility to calling drivers which are free of reading information from any location and to use any technique to compute power costs. Moreover, the capacity states registered by drivers in the EM framework are not required to match real performance states of the target. This is particularly important on targets where the performance states are not known by the OS. The power cost coefficients managed by the EM framework are specified in milli-watts. Although the two potential users of those coefficients (IPA and EAS) only need relative correctness, IPA specifically needs to compare the power of CPUs with the power of other components (GPUs, for example), which are still expressed in absolute terms in their respective subsystems. Hence, specifying the power of CPUs in milli-watts should help transitioning IPA to using the EM framework without introducing new problems by keeping units comparable across sub-systems. On the longer term, the EM of other devices than CPUs could also be managed by the EM framework, which would enable to remove the absolute unit. However, this is not absolutely required as a first step, so this extension of the EM framework is left for later. On the client side, the EM framework offers APIs to access the power cost tables of a CPU (em_cpu_get()), and to estimate the energy consumed by the CPUs of a performance domain (em_pd_energy()). Clients such as the task scheduler can then use these APIs to access the shared data structures holding the Energy Model of CPUs. Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-4-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>