Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"Updates for tracing and bootconfig:
- Add support for "bool" type in synthetic events
- Add per instance tracing for bootconfig
- Support perf-style return probe ("SYMBOL%return") in kprobes and
uprobes
- Allow for kprobes to be enabled earlier in boot up
- Added tracepoint helper function to allow testing if tracepoints
are enabled in headers
- Synthetic events can now have dynamic strings (variable length)
- Various fixes and cleanups"
* tag 'trace-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (58 commits)
tracing: support "bool" type in synthetic trace events
selftests/ftrace: Add test case for synthetic event syntax errors
tracing: Handle synthetic event array field type checking correctly
selftests/ftrace: Change synthetic event name for inter-event-combined test
tracing: Add synthetic event error logging
tracing: Check that the synthetic event and field names are legal
tracing: Move is_good_name() from trace_probe.h to trace.h
tracing: Don't show dynamic string internals in synthetic event description
tracing: Fix some typos in comments
tracing/boot: Add ftrace.instance.*.alloc_snapshot option
tracing: Fix race in trace_open and buffer resize call
tracing: Check return value of __create_val_fields() before using its result
tracing: Fix synthetic print fmt check for use of __get_str()
tracing: Remove a pointless assignment
ftrace: ftrace_global_list is renamed to ftrace_ops_list
ftrace: Format variable declarations of ftrace_allocate_records
ftrace: Simplify the calculation of page number for ftrace_page->records
ftrace: Simplify the dyn_ftrace->flags macro
ftrace: Simplify the hash calculation
ftrace: Use fls() to get the bits for dup_hash()
...
|
|
As tracepoints are discouraged from being added in a header because it can
cause side effects if other tracepoints are in headers, as well as bloat the
kernel as the trace_<tracepoint>() function is not a small inline, the common
workaround is to add a function call that calls a wrapper function in a
C file that then calls the tracepoint. But as function calls add overhead,
this function should only be called when the tracepoint in question is
enabled. To get around this overhead, a static_branch can be used to only
have the tracepoint wrapper get called when the tracepoint is enabled.
Add a tracepoint_enabled(tp) macro that gets passed the name of the
tracepoint, and this becomes a static_branch that is enabled when the
tracepoint is enabled and is a nop when the tracepoint is disabled.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
Currently the tracepoint site will iterate a vector and issue indirect
calls to however many handlers are registered (ie. the vector is
long).
Using static_call() it is possible to optimize this for the common
case of only having a single handler registered. In this case the
static_call() can directly call this handler. Otherwise, if the vector
is longer than 1, call a function that iterates the whole vector like
the current code.
[peterz: updated to new interface]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20200818135805.279421092@infradead.org
|
|
This is an opt-in interface that allows a tracepoint to provide a safe
buffer that can be written from a BPF_PROG_TYPE_RAW_TRACEPOINT program.
The size of the buffer must be a compile-time constant, and is checked
before allowing a BPF program to attach to a tracepoint that uses this
feature.
The pointer to this buffer will be the first argument of tracepoints
that opt in; the pointer is valid and can be bpf_probe_read() by both
BPF_PROG_TYPE_RAW_TRACEPOINT and BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE
programs that attach to such a tracepoint, but the buffer to which it
points may only be written by the latter.
Signed-off-by: Matt Mullins <mmullins@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
commit 46e0c9be206f ("kernel: tracepoints: add support for relative
references") changes the layout of the __tracepoint_ptrs section on
architectures supporting relative references. However, it does so
without turning struct tracepoint * const into const int elsewhere in
the tracepoint code, which has the following side-effect:
Setting mod->num_tracepoints is done in by module.c:
mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
sizeof(*mod->tracepoints_ptrs),
&mod->num_tracepoints);
Basically, since sizeof(*mod->tracepoints_ptrs) is a pointer size
(rather than sizeof(int)), num_tracepoints is erroneously set to half the
size it should be on 64-bit arch. So a module with an odd number of
tracepoints misses the last tracepoint due to effect of integer
division.
So in the module going notifier:
for_each_tracepoint_range(mod->tracepoints_ptrs,
mod->tracepoints_ptrs + mod->num_tracepoints,
tp_module_going_check_quiescent, NULL);
the expression (mod->tracepoints_ptrs + mod->num_tracepoints) actually
evaluates to something within the bounds of the array, but miss the
last tracepoint if the number of tracepoints is odd on 64-bit arch.
Fix this by introducing a new typedef: tracepoint_ptr_t, which
is either "const int" on architectures that have PREL32 relocations,
or "struct tracepoint * const" on architectures that does not have
this feature.
Also provide a new tracepoint_ptr_defer() static inline to
encapsulate deferencing this type rather than duplicate code and
ugly idefs within the for_each_tracepoint_range() implementation.
This issue appears in 4.19-rc kernels, and should ideally be fixed
before the end of the rc cycle.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Link: http://lkml.kernel.org/r/20181013191050.22389-1-mathieu.desnoyers@efficios.com
Link: http://lkml.kernel.org/r/20180704083651.24360-7-ard.biesheuvel@linaro.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
Introduce BPF_PROG_TYPE_RAW_TRACEPOINT bpf program type to access
kernel internal arguments of the tracepoints in their raw form.
>From bpf program point of view the access to the arguments look like:
struct bpf_raw_tracepoint_args {
__u64 args[0];
};
int bpf_prog(struct bpf_raw_tracepoint_args *ctx)
{
// program can read args[N] where N depends on tracepoint
// and statically verified at program load+attach time
}
kprobe+bpf infrastructure allows programs access function arguments.
This feature allows programs access raw tracepoint arguments.
Similar to proposed 'dynamic ftrace events' there are no abi guarantees
to what the tracepoints arguments are and what their meaning is.
The program needs to type cast args properly and use bpf_probe_read()
helper to access struct fields when argument is a pointer.
For every tracepoint __bpf_trace_##call function is prepared.
In assembler it looks like:
(gdb) disassemble __bpf_trace_xdp_exception
Dump of assembler code for function __bpf_trace_xdp_exception:
0xffffffff81132080 <+0>: mov %ecx,%ecx
0xffffffff81132082 <+2>: jmpq 0xffffffff811231f0 <bpf_trace_run3>
where
TRACE_EVENT(xdp_exception,
TP_PROTO(const struct net_device *dev,
const struct bpf_prog *xdp, u32 act),
The above assembler snippet is casting 32-bit 'act' field into 'u64'
to pass into bpf_trace_run3(), while 'dev' and 'xdp' args are passed as-is.
All of ~500 of __bpf_trace_*() functions are only 5-10 byte long
and in total this approach adds 7k bytes to .text.
This approach gives the lowest possible overhead
while calling trace_xdp_exception() from kernel C code and
transitioning into bpf land.
Since tracepoint+bpf are used at speeds of 1M+ events per second
this is valuable optimization.
The new BPF_RAW_TRACEPOINT_OPEN sys_bpf command is introduced
that returns anon_inode FD of 'bpf-raw-tracepoint' object.
The user space looks like:
// load bpf prog with BPF_PROG_TYPE_RAW_TRACEPOINT type
prog_fd = bpf_prog_load(...);
// receive anon_inode fd for given bpf_raw_tracepoint with prog attached
raw_tp_fd = bpf_raw_tracepoint_open("xdp_exception", prog_fd);
Ctrl-C of tracing daemon or cmdline tool that uses this feature
will automatically detach bpf program, unload it and
unregister tracepoint probe.
On the kernel side the __bpf_raw_tp_map section of pointers to
tracepoint definition and to __bpf_trace_*() probe function is used
to find a tracepoint with "xdp_exception" name and
corresponding __bpf_trace_xdp_exception() probe function
which are passed to tracepoint_probe_register() to connect probe
with tracepoint.
Addition of bpf_raw_tracepoint doesn't interfere with ftrace and perf
tracepoint mechanisms. perf_event_open() can be used in parallel
on the same tracepoint.
Multiple bpf_raw_tracepoint_open("xdp_exception", prog_fd) are permitted.
Each with its own bpf program. The kernel will execute
all tracepoint probes and all attached bpf programs.
In the future bpf_raw_tracepoints can be extended with
query/introspection logic.
__bpf_raw_tp_map section logic was contributed by Steven Rostedt
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Some tracepoints have a registration function that gets enabled when the
tracepoint is enabled. There may be cases that the registraction function
must fail (for example, can't allocate enough memory). In this case, the
tracepoint should also fail to register, otherwise the user would not know
why the tracepoint is not working.
Cc: David Howells <dhowells@redhat.com>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
|
The following patch will need to declare array of struct
trace_print_flags in a header. To prevent this header from pulling in
all of RCU through trace_events.h, move the struct
trace_print_flags{_64} definitions to the new lightweight
tracepoint-defs.h header.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Steven recommended open coding access to tracepoint->key to add
trace points to headers. Unfortunately this is difficult for some
headers (such as x86 asm/msr.h) because including tracepoint.h
includes so many other headers that it causes include loops.
The main problem is the include of linux/rcupdate.h, which
pulls in a lot of other headers. The rcu header is only needed
when actually defining trace points.
Move the struct tracepoint into a separate tracepoint-defs.h
header that can be included without pulling in all of RCU.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1449018060-1742-2-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|