summaryrefslogtreecommitdiff
path: root/drivers/cxl/core.c
AgeCommit message (Collapse)Author
2021-06-15cxl/pmem: Register 'pmem' / cxl_nvdimm devicesDan Williams
While a memX device on /sys/bus/cxl represents a CXL memory expander control interface, a pmemX device represents the persistent memory sub-functionality. It bridges the CXL subystem to the libnvdimm nmemX control interface. With this skeleton ndctl can now see persistent memory devices on a "CXL" bus. Later patches add support for translating libnvdimm native commands to CXL commands. # ndctl list -BDiu -b CXL { "provider":"CXL", "dev":"ndbus1", "dimms":[ { "dev":"nmem1", "state":"disabled" }, { "dev":"nmem0", "state":"disabled" } ] } Given nvdimm_bus_unregister() removes all devices on an ndbus0 the cxl_pmem infrastructure needs to arrange ->remove() to be triggered on cxl_nvdimm devices to keep their enabled state synchronized with the registration state of their corresponding device on the nvdimm_bus. In other words, always arrange for cxl_nvdimm_driver.remove() to unregister nvdimms from an nvdimm_bus ahead of the bus being unregistered. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162380012696.3039556.4293801691038740850.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-15cxl/pmem: Add initial infrastructure for pmem supportDan Williams
Register an 'nvdimm-bridge' device to act as an anchor for a libnvdimm bus hierarchy. Also, flesh out the cxl_bus definition to allow a cxl_nvdimm_bridge_driver to attach to the bridge and trigger the nvdimm-bus registration. The creation of the bridge is gated on the detection of a PMEM capable address space registered to the root. The bridge indirection allows the libnvdimm module to remain unloaded on platforms without PMEM support. Given that the probing of ACPI0017 is asynchronous to CXL endpoint devices, and the expectation that CXL endpoint devices register other PMEM resources on the 'CXL' nvdimm bus, a workqueue is added. The workqueue is needed to run bus_rescan_devices() outside of the device_lock() of the nvdimm-bridge device to rendezvous nvdimm resources as they arrive. For now only the bus is taken online/offline in the workqueue. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162379909706.2993820.14051258608641140169.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-15cxl/core: Add cxl-bus driver infrastructureDan Williams
Enable devices on the 'cxl' bus to be attached to drivers. The initial user of this functionality is a driver for an 'nvdimm-bridge' device that anchors a libnvdimm hierarchy attached to CXL persistent memory resources. Other device types that will leverage this include: cxl_port: map and use component register functionality (HDM Decoders) cxl_nvdimm: translate CXL memory expander endpoints to libnvdimm 'nvdimm' objects cxl_region: translate CXL interleave sets to libnvdimm 'region' objects The pairing of devices to drivers is handled through the cxl_device_id() matching to cxl_driver.id values. A cxl_device_id() of '0' indicates no driver support. In addition to ->match(), ->probe(), and ->remove() support for the 'cxl' bus introduce MODULE_ALIAS_CXL() to autoload modules containing cxl-drivers. Drivers are added in follow-on changes. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162379909190.2993820.6134168109678004186.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-12cxl/component_regs: Fix offsetBen Widawsky
The CXL.cache and CXL.mem registers begin after the CXL.io registers which occupy the first 0x1000 bytes. The current code wasn't setting this up properly for future users of the component registers. It was correct for the probing code however. Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Ira Weiny <ira.weiny@intel.com> Fixes: 08422378c4ad ("cxl/pci: Add HDM decoder capabilities") Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/20210611051113.224328-1-ben.widawsky@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-12cxl/hdm: Fix decoder count calculationBen Widawsky
The decoder count in the HDM decoder capability structure is an encoded field. As defined in the spec: Decoder Count: Reports the number of memory address decoders implemented by the component. 0 – 1 Decoder 1 – 2 Decoders 2 – 4 Decoders 3 – 6 Decoders 4 – 8 Decoders 5 – 10 Decoders All other values are reserved Nothing is actually fixed by this as nothing actually used this mapping yet. Cc: Ira Weiny <ira.weiny@intel.com> Fixes: 08422378c4ad ("cxl/pci: Add HDM decoder capabilities") Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Link: https://lore.kernel.org/r/20210611190111.121295-1-ben.widawsky@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-09cxl/acpi: Introduce cxl_decoder objectsDan Williams
A cxl_decoder is a child of a cxl_port. It represents a hardware decoder configuration of an upstream port to one or more of its downstream ports. The decoder is either represented in CXL standard HDM decoder registers (see CXL 2.0 section 8.2.5.12 CXL HDM Decoder Capability Structure), or it is a static decode configuration communicated by platform firmware (see the CXL Early Discovery Table: Fixed Memory Window Structure). The firmware described and hardware described decoders differ slightly leading to 2 different sub-types of decoders, cxl_decoder_root and cxl_decoder_switch. At the root level the decode capabilities restrict what can be mapped beneath them. Mid-level switch decoders are configured for either acclerator (type-2) or memory-expander (type-3) operation, but they are otherwise agnostic to the type of memory (volatile vs persistent) being mapped. Here is an example topology from a single-ported host-bridge environment without CFMWS decodes enumerated. /sys/bus/cxl/devices/root0 ├── devtype ├── dport0 -> ../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── port1 │   ├── decoder1.0 │   │   ├── devtype │   │   ├── locked │   │   ├── size │   │   ├── start │   │   ├── subsystem -> ../../../../../../bus/cxl │   │   ├── target_list │   │   ├── target_type │   │   └── uevent │   ├── devtype │   ├── dport0 -> ../../../../pci0000:34/0000:34:00.0 │   ├── subsystem -> ../../../../../bus/cxl │   ├── uevent │   └── uport -> ../../../../LNXSYSTM:00/LNXSYBUS:00/ACPI0016:00 ├── subsystem -> ../../../../bus/cxl ├── uevent └── uport -> ../../ACPI0017:00 Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162325695128.2293823.17519927266014762694.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-09cxl/acpi: Add downstream port data to cxl_port instancesDan Williams
In preparation for infrastructure that enumerates and configures the CXL decode mechanism of an upstream port to its downstream ports, add a representation of a CXL downstream port. On ACPI systems the top-most logical downstream ports in the hierarchy are the host bridges (ACPI0016 devices) that decode the memory windows described by the CXL Early Discovery Table Fixed Memory Window Structures (CEDT.CFMWS). Reviewed-by: Alison Schofield <alison.schofield@intel.com> Link: https://lore.kernel.org/r/162325450624.2293126.3533006409920271718.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-09cxl/acpi: Introduce the root of a cxl_port topologyDan Williams
While CXL builds upon the PCI software model for enumeration and endpoint control, a static platform component is required to bootstrap the CXL memory layout. Similar to how ACPI identifies root-level PCI memory resources, ACPI data enumerates the address space and interleave configuration for CXL Memory. In addition to identifying host bridges, ACPI is responsible for enumerating the CXL memory space that can be addressed by downstream decoders. This is similar to the requirement for ACPI to publish resources via the _CRS method for PCI host bridges. Specifically, ACPI publishes a table, CXL Early Discovery Table (CEDT), which includes a list of CXL Memory resources, CXL Fixed Memory Window Structures (CFMWS). For now, introduce the core infrastructure for a cxl_port hierarchy starting with a root level anchor represented by the ACPI0017 device. Follow on changes model support for the configurable decode capabilities of cxl_port instances, i.e. CXL switch support. Co-developed-by: Alison Schofield <alison.schofield@intel.com> Signed-off-by: Alison Schofield <alison.schofield@intel.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162325449515.2293126.15303270193010154608.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-05cxl/pci: Fixup devm_cxl_iomap_block() to take a 'struct device *'Dan Williams
The expectation is that devm functions take 'struct device *' and pci functions take 'struct pci_dev *'. Swap out the @pdev argument for @dev and fixup related helpers. Cc: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162216592374.3833641.13281743585064451514.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-05cxl/pci: Add HDM decoder capabilitiesBen Widawsky
An HDM decoder is defined in the CXL 2.0 specification as a mechanism that allow devices and upstream ports to claim memory address ranges and participate in interleave sets. HDM decoder registers are within the component register block defined in CXL 2.0 8.2.3 CXL 2.0 Component Registers as part of the CXL.cache and CXL.mem subregion. The Component Register Block is found via the Register Locator DVSEC in a similar fashion to how the CXL Device Register Block is found. The primary difference is the capability id size of the Component Register Block is a single DWORD instead of 4 DWORDS. It's now possible to configure a CXL type 3 device's HDM decoder. Such programming is expected for CXL devices with persistent memory, and hot plugged CXL devices that participate in CXL.mem with volatile memory. Add probe and mapping functions for the component register blocks. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Co-developed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Co-developed-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Link: https://lore.kernel.org/r/20210528004922.3980613-6-ira.weiny@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-05cxl/pci: Reserve individual register block regionsIra Weiny
Some hardware implementations mix component and device registers into the same BAR and the driver stack is going to need independent mapping implementations for those 2 cases. Furthermore, it will be nice to have finer grained mappings should user space want to map some register blocks. Now that individual register blocks are mapped; those blocks regions should be reserved individually to fully separate the register blocks. Release the 'global' memory reservation and create individual register block region reservations through devm. NOTE: pci_release_mem_regions() is still compatible with pcim_enable_device() because it removes the automatic region release when called. So preserve the pcim_enable_device() so that the pcim interface can be called if needed. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/20210604005316.4187340-1-ira.weiny@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-06-05cxl/pci: Map registers based on capabilitiesIra Weiny
The information required to map registers based on capabilities is contained within the bars themselves. This means the bar must be mapped to read the information needed and then unmapped to map the individual parts of the BAR based on capabilities. Change cxl_setup_device_regs() to return a new cxl_register_map, change the name to cxl_probe_device_regs(). Allocate and place cxl_register_maps on a list while processing all of the specified register blocks. After probing all the register blocks go back and map smaller registers blocks based on their capabilities and dispose of the cxl_register_maps. NOTE: pci_iomap() is not managed automatically via pcim_enable_device() so be careful to call pci_iounmap() correctly. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/20210604005036.4187184-1-ira.weiny@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-05-26cxl/mem: Demarcate vendor specific capability IDsBen Widawsky
Vendor capabilities occupy 0x8000 to 0xFFFF according to CXL 2.0 spec 8.2.8.2.1 CXL Device Capabilities. While they are not defined by the spec, they are allowed and not "unknown". Call this detail out in the logs to let users easily distinguish the difference. This patch is a squash of two earlier patches and take in some minor suggestions from both Vishal and Dan. Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/20210520204852.1070780-1-ben.widawsky@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-05-14cxl/core: Refactor CXL register lookup for bridge reuseDan Williams
While CXL Memory Device endpoints locate the CXL MMIO registers in a PCI BAR, CXL root bridges have their MMIO base address described by platform firmware. Refactor the existing register lookup into a generic facility for endpoints and bridges to share. Reviewed-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162096972534.1865304.3218686216153688039.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-05-14cxl/core: Rename bus.c to core.cDan Williams
In preparation for more generic shared functionality across endpoint consumers of core cxl resources, and platform-firmware producers of those resources, rename bus.c to core.c. In addition to the central rendezvous for interleave coordination, the core will also define common routines like CXL register block mapping. Acked-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162096972018.1865304.11079951161445408423.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>