Age | Commit message (Collapse) | Author |
|
Many architectures duplicate similar shell scripts.
This commit converts sparc to use scripts/syscalltbl.sh. This also
unifies syscall_table_64.h and syscall_table_c32.h.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
|
|
System call table generation script must be run to gener-
ate unistd_32/64.h and syscall_table_32/64/c32.h files.
This patch will have changes which will invokes the script.
This patch will generate unistd_32/64.h and syscall_table-
_32/64/c32.h files by the syscall table generation script
invoked by parisc/Makefile and the generated files against
the removed files must be identical.
The generated uapi header file will be included in uapi/-
asm/unistd.h and generated system call table header file
will be included by kernel/systbls_32/64.S file.
Signed-off-by: Firoz Khan <firoz.khan@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Fixes: 8b30ca73b7cc ("sparc: Add all necessary direct socket system calls.")
Reported-by: Joseph Myers <joseph@codesourcery.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
... and drop the pointless checks - sys_truncate() itself
might've lacked the check when that stuff was first written,
but it has already grown one by the time that stuff went into
mainline.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
just convert compat_sys_{readahead,fadvise64,fadvise64_64} to
COMPAT_SYSCALL_DEFINE
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
SYSCALL_DEFINE and COMPAT_SYSCALL_DEFINE already give argument
normalization.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Hook up statx.
Ignore pkeys system calls, we don't have protection keeys
on SPARC.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The GLIBC folks would like to eliminate socketcall support
eventually, and this makes sense regardless so wire them
all up.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
After hooking up system call, userfaultfd selftest was successful for
both 32 and 64 bit version of test.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: David Drysdale <drysdale@google.com>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
ftruncate() doesn't - it's declared with size as unsigned long,
but truncate() and lseek() have that argument as signed long.
IOW, these two really need sign extension + branch to native
syscall; argument validation in sys_... does *not* suffice.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
SYSCALL_DEFINE-added wrapper will take care of those just fine;
no extra compat wrappers needed.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
Pull big execve/kernel_thread/fork unification series from Al Viro:
"All architectures are converted to new model. Quite a bit of that
stuff is actually shared with architecture trees; in such cases it's
literally shared branch pulled by both, not a cherry-pick.
A lot of ugliness and black magic is gone (-3KLoC total in this one):
- kernel_thread()/kernel_execve()/sys_execve() redesign.
We don't do syscalls from kernel anymore for either kernel_thread()
or kernel_execve():
kernel_thread() is essentially clone(2) with callback run before we
return to userland, the callbacks either never return or do
successful do_execve() before returning.
kernel_execve() is a wrapper for do_execve() - it doesn't need to
do transition to user mode anymore.
As a result kernel_thread() and kernel_execve() are
arch-independent now - they live in kernel/fork.c and fs/exec.c
resp. sys_execve() is also in fs/exec.c and it's completely
architecture-independent.
- daemonize() is gone, along with its parts in fs/*.c
- struct pt_regs * is no longer passed to do_fork/copy_process/
copy_thread/do_execve/search_binary_handler/->load_binary/do_coredump.
- sys_fork()/sys_vfork()/sys_clone() unified; some architectures
still need wrappers (ones with callee-saved registers not saved in
pt_regs on syscall entry), but the main part of those suckers is in
kernel/fork.c now."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (113 commits)
do_coredump(): get rid of pt_regs argument
print_fatal_signal(): get rid of pt_regs argument
ptrace_signal(): get rid of unused arguments
get rid of ptrace_signal_deliver() arguments
new helper: signal_pt_regs()
unify default ptrace_signal_deliver
flagday: kill pt_regs argument of do_fork()
death to idle_regs()
don't pass regs to copy_process()
flagday: don't pass regs to copy_thread()
bfin: switch to generic vfork, get rid of pointless wrappers
xtensa: switch to generic clone()
openrisc: switch to use of generic fork and clone
unicore32: switch to generic clone(2)
score: switch to generic fork/vfork/clone
c6x: sanitize copy_thread(), get rid of clone(2) wrapper, switch to generic clone()
take sys_fork/sys_vfork/sys_clone prototypes to linux/syscalls.h
mn10300: switch to generic fork/vfork/clone
h8300: switch to generic fork/vfork/clone
tile: switch to generic clone()
...
Conflicts:
arch/microblaze/include/asm/Kbuild
|
|
Reported-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
Backmerge from the point in mainline where a trivial conflict had been
introduced (arch/sparc/kernel/sys_sparc_64.c had grown sys_kern_features()
right after where kernel_execve() used to be)
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The Montgomery Multiply, Montgomery Square, and Multiple-Precision
Multiply instructions work by loading a combination of the floating
point and multiple register windows worth of integer registers
with the inputs.
These values are 64-bit. But for 32-bit userland processes we only
save the low 32-bits of each integer register during a register spill.
This is because the register window save area is in the user stack and
has a fixed layout.
Therefore, the only way to use these instruction in 32-bit mode is to
perform the following sequence:
1) Load the top-32bits of a choosen integer register with a sentinel,
say "-1". This will be in the outer-most register window.
The idea is that we're trying to see if the outer-most register
window gets spilled, and thus the 64-bit values were truncated.
2) Load all the inputs for the montmul/montsqr/mpmul instruction,
down to the inner-most register window.
3) Execute the opcode.
4) Traverse back up to the outer-most register window.
5) Check the sentinel, if it's still "-1" store the results.
Otherwise retry the entire sequence.
This retry is extremely troublesome. If you're just unlucky and an
interrupt or other trap happens, it'll push that outer-most window to
the stack and clear the sentinel when we restore it.
We could retry forever and never make forward progress if interrupts
arrive at a fast enough rate (consider perf events as one example).
So we have do limited retries and fallback to software which is
extremely non-deterministic.
Luckily it's very straightforward to provide a mechanism to let
32-bit applications use a 64-bit stack. Stacks in 64-bit mode are
biased by 2047 bytes, which means that the lowest bit is set in the
actual %sp register value.
So if we see bit zero set in a 32-bit application's stack we treat
it like a 64-bit stack.
Runtime detection of such a facility is tricky, and cumbersome at
best. For example, just trying to use a biased stack and seeing if it
works is hard to recover from (the signal handler will need to use an
alt stack, plus something along the lines of longjmp). Therefore, we
add a system call to report a bitmask of arch specific features like
this in a cheap and less hairy way.
With help from Andy Polyakov.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We still have wrappers, but nowhere near as scary as they used to be.
I'm not sure how necessary that flushw is now, TBH...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Use the 32-bit compat keyctl() syscall wrapper on Sparc64 for Sparc32 binary
compatibility.
Without this, keyctl(KEYCTL_INSTANTIATE_IOV) is liable to malfunction as it
uses an iovec array read from userspace - though the kernel should survive this
as it checks pointers and sizes anyway.
I think all the other keyctl() function should just work, provided (a) the top
32-bits of each 64-bit argument register are cleared prior to invoking the
syscall routine, and the 32-bit address space is right at the 0-end of the
64-bit address space. Most of the arguments are 32-bit anyway, and so for
those clearing is not required.
Signed-off-by: David Howells <dhowells@redhat.com
cc: "David S. Miller" <davem@davemloft.net>
cc: sparclinux@vger.kernel.org
cc: stable@vger.kernel.org
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The nfsservctl system call is now gone, so we should remove all
linkage for it.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
32bit and 64bit on x86 are tested and working. The rest I have looked
at closely and I can't find any problems.
setns is an easy system call to wire up. It just takes two ints so I
don't expect any weird architecture porting problems.
While doing this I have noticed that we have some architectures that are
very slow to get new system calls. cris seems to be the slowest where
the last system calls wired up were preadv and pwritev. avr32 is weird
in that recvmmsg was wired up but never declared in unistd.h. frv is
behind with perf_event_open being the last syscall wired up. On h8300
the last system call wired up was epoll_wait. On m32r the last system
call wired up was fallocate. mn10300 has recvmmsg as the last system
call wired up. The rest seem to at least have syncfs wired up which was
new in the 2.6.39.
v2: Most of the architecture support added by Daniel Lezcano <dlezcano@fr.ibm.com>
v3: ported to v2.6.36-rc4 by: Eric W. Biederman <ebiederm@xmission.com>
v4: Moved wiring up of the system call to another patch
v5: ported to v2.6.39-rc6
v6: rebased onto parisc-next and net-next to avoid syscall conflicts.
v7: ported to Linus's latest post 2.6.39 tree.
> arch/blackfin/include/asm/unistd.h | 3 ++-
> arch/blackfin/mach-common/entry.S | 1 +
Acked-by: Mike Frysinger <vapier@gentoo.org>
Oh - ia64 wiring looks good.
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch adds a multiple message send syscall and is the send
version of the existing recvmmsg syscall. This is heavily
based on the patch by Arnaldo that added recvmmsg.
I wrote a microbenchmark to test the performance gains of using
this new syscall:
http://ozlabs.org/~anton/junkcode/sendmmsg_test.c
The test was run on a ppc64 box with a 10 Gbit network card. The
benchmark can send both UDP and RAW ethernet packets.
64B UDP
batch pkts/sec
1 804570
2 872800 (+ 8 %)
4 916556 (+14 %)
8 939712 (+17 %)
16 952688 (+18 %)
32 956448 (+19 %)
64 964800 (+20 %)
64B raw socket
batch pkts/sec
1 1201449
2 1350028 (+12 %)
4 1461416 (+22 %)
8 1513080 (+26 %)
16 1541216 (+28 %)
32 1553440 (+29 %)
64 1557888 (+30 %)
We see a 20% improvement in throughput on UDP send and 30%
on raw socket send.
[ Add sparc syscall entries. -DaveM ]
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|