Age | Commit message (Collapse) | Author |
|
On NVIDIA Carmel cores, CNP behaves differently than it does on standard
ARM cores. On Carmel, if two cores have CNP enabled and share an L2 TLB
entry created by core0 for a specific ASID, a non-shareable TLBI from
core1 may still see the shared entry. On standard ARM cores, that TLBI
will invalidate the shared entry as well.
This causes issues with patchsets that attempt to do local TLBIs based
on cpumasks instead of broadcast TLBIs. Avoid these issues by disabling
CNP support for NVIDIA Carmel cores.
Signed-off-by: Rich Wiley <rwiley@nvidia.com>
Link: https://lore.kernel.org/r/20210324002809.30271-1-rwiley@nvidia.com
[will: Fix pre-existing whitespace issue]
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The workaround for Cortex-A76 erratum 1463225 is split across the
syscall and debug handlers in separate files. This structure currently
forces us to do some redundant work for debug exceptions from EL0, is a
little difficult to follow, and gets in the way of some future rework of
the exception entry code as it requires exceptions to be unmasked late
in the syscall handling path.
To simplify things, and as a preparatory step for future rework of
exception entry, this patch moves all the workaround logic into
entry-common.c. As the debug handler only needs to run for EL1 debug
exceptions, we no longer call it for EL0 debug exceptions, and no longer
need to check user_mode(regs) as this is always false. For clarity
cortex_a76_erratum_1463225_debug_handler() is changed to return bool.
In the SVC path, the workaround is applied earlier, but this should have
no functional impact as exceptions are still masked. In the debug path
we run the fixup before explicitly disabling preemption, but we will not
attempt to preempt before returning from the exception.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210202120341.28858-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The spectre-v3a mitigation is split between cpu_errata.c and spectre.c,
with the former handling detection of the problem and the latter handling
enabling of the workaround.
Move the detection logic alongside the enabling logic, like we do for the
other spectre mitigations.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20201113113847.21619-10-will@kernel.org
|
|
Since ARM64_HARDEN_EL2_VECTORS is really a mitigation for Spectre-v3a,
rename it accordingly for consistency with the v2 and v4 mitigation.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20201113113847.21619-9-will@kernel.org
|
|
The EL2 vectors installed when a guest is running point at one of the
following configurations for a given CPU:
- Straight at __kvm_hyp_vector
- A trampoline containing an SMC sequence to mitigate Spectre-v2 and
then a direct branch to __kvm_hyp_vector
- A dynamically-allocated trampoline which has an indirect branch to
__kvm_hyp_vector
- A dynamically-allocated trampoline containing an SMC sequence to
mitigate Spectre-v2 and then an indirect branch to __kvm_hyp_vector
The indirect branches mean that VA randomization at EL2 isn't trivially
bypassable using Spectre-v3a (where the vector base is readable by the
guest).
Rather than populate these vectors dynamically, configure everything
statically and use an enumerated type to identify the vector "slot"
corresponding to one of the configurations above. This both simplifies
the code, but also makes it much easier to implement at EL2 later on.
Signed-off-by: Will Deacon <will@kernel.org>
[maz: fixed double call to kvm_init_vector_slots() on nVHE]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20201113113847.21619-8-will@kernel.org
|
|
QCOM KRYO2XX Silver cores are Cortex-A53 based and are
susceptible to the 845719 erratum. Add them to the lookup
list to apply the erratum.
Signed-off-by: Konrad Dybcio <konrad.dybcio@somainline.org>
Link: https://lore.kernel.org/r/20201104232218.198800-5-konrad.dybcio@somainline.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
On Cortex-A77 r0p0 and r1p0, a sequence of a non-cacheable or device load
and a store exclusive or PAR_EL1 read can cause a deadlock.
The workaround requires a DMB SY before and after a PAR_EL1 register
read. In addition, it's possible an interrupt (doing a device read) or
KVM guest exit could be taken between the DMB and PAR read, so we
also need a DMB before returning from interrupt and before returning to
a guest.
A deadlock is still possible with the workaround as KVM guests must also
have the workaround. IOW, a malicious guest can deadlock an affected
systems.
This workaround also depends on a firmware counterpart to enable the h/w
to insert DMB SY after load and store exclusive instructions. See the
errata document SDEN-1152370 v10 [1] for more information.
[1] https://static.docs.arm.com/101992/0010/Arm_Cortex_A77_MP074_Software_Developer_Errata_Notice_v10.pdf
Signed-off-by: Rob Herring <robh@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: kvmarm@lists.cs.columbia.edu
Link: https://lore.kernel.org/r/20201028182839.166037-2-robh@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"There's quite a lot of code here, but much of it is due to the
addition of a new PMU driver as well as some arm64-specific selftests
which is an area where we've traditionally been lagging a bit.
In terms of exciting features, this includes support for the Memory
Tagging Extension which narrowly missed 5.9, hopefully allowing
userspace to run with use-after-free detection in production on CPUs
that support it. Work is ongoing to integrate the feature with KASAN
for 5.11.
Another change that I'm excited about (assuming they get the hardware
right) is preparing the ASID allocator for sharing the CPU page-table
with the SMMU. Those changes will also come in via Joerg with the
IOMMU pull.
We do stray outside of our usual directories in a few places, mostly
due to core changes required by MTE. Although much of this has been
Acked, there were a couple of places where we unfortunately didn't get
any review feedback.
Other than that, we ran into a handful of minor conflicts in -next,
but nothing that should post any issues.
Summary:
- Userspace support for the Memory Tagging Extension introduced by
Armv8.5. Kernel support (via KASAN) is likely to follow in 5.11.
- Selftests for MTE, Pointer Authentication and FPSIMD/SVE context
switching.
- Fix and subsequent rewrite of our Spectre mitigations, including
the addition of support for PR_SPEC_DISABLE_NOEXEC.
- Support for the Armv8.3 Pointer Authentication enhancements.
- Support for ASID pinning, which is required when sharing
page-tables with the SMMU.
- MM updates, including treating flush_tlb_fix_spurious_fault() as a
no-op.
- Perf/PMU driver updates, including addition of the ARM CMN PMU
driver and also support to handle CPU PMU IRQs as NMIs.
- Allow prefetchable PCI BARs to be exposed to userspace using normal
non-cacheable mappings.
- Implementation of ARCH_STACKWALK for unwinding.
- Improve reporting of unexpected kernel traps due to BPF JIT
failure.
- Improve robustness of user-visible HWCAP strings and their
corresponding numerical constants.
- Removal of TEXT_OFFSET.
- Removal of some unused functions, parameters and prototypes.
- Removal of MPIDR-based topology detection in favour of firmware
description.
- Cleanups to handling of SVE and FPSIMD register state in
preparation for potential future optimisation of handling across
syscalls.
- Cleanups to the SDEI driver in preparation for support in KVM.
- Miscellaneous cleanups and refactoring work"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (148 commits)
Revert "arm64: initialize per-cpu offsets earlier"
arm64: random: Remove no longer needed prototypes
arm64: initialize per-cpu offsets earlier
kselftest/arm64: Check mte tagged user address in kernel
kselftest/arm64: Verify KSM page merge for MTE pages
kselftest/arm64: Verify all different mmap MTE options
kselftest/arm64: Check forked child mte memory accessibility
kselftest/arm64: Verify mte tag inclusion via prctl
kselftest/arm64: Add utilities and a test to validate mte memory
perf: arm-cmn: Fix conversion specifiers for node type
perf: arm-cmn: Fix unsigned comparison to less than zero
arm64: dbm: Invalidate local TLB when setting TCR_EL1.HD
arm64: mm: Make flush_tlb_fix_spurious_fault() a no-op
arm64: Add support for PR_SPEC_DISABLE_NOEXEC prctl() option
arm64: Pull in task_stack_page() to Spectre-v4 mitigation code
KVM: arm64: Allow patching EL2 vectors even with KASLR is not enabled
arm64: Get rid of arm64_ssbd_state
KVM: arm64: Convert ARCH_WORKAROUND_2 to arm64_get_spectre_v4_state()
KVM: arm64: Get rid of kvm_arm_have_ssbd()
KVM: arm64: Simplify handling of ARCH_WORKAROUND_2
...
|
|
Out with the old ghost, in with the new...
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Owing to the fact that the host kernel is always mitigated, we can
drastically simplify the WA2 handling by keeping the mitigation
state ON when entering the guest. This means the guest is either
unaffected or not mitigated.
This results in a nice simplification of the mitigation space,
and the removal of a lot of code that was never really used anyway.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Rewrite the Spectre-v4 mitigation handling code to follow the same
approach as that taken by Spectre-v2.
For now, report to KVM that the system is vulnerable (by forcing
'ssbd_state' to ARM64_SSBD_UNKNOWN), as this will be cleared up in
subsequent steps.
Signed-off-by: Will Deacon <will@kernel.org>
|
|
In a similar manner to the renaming of ARM64_HARDEN_BRANCH_PREDICTOR
to ARM64_SPECTRE_V2, rename ARM64_SSBD to ARM64_SPECTRE_V4. This isn't
_entirely_ accurate, as we also need to take into account the interaction
with SSBS, but that will be taken care of in subsequent patches.
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The Spectre-v2 mitigation code is pretty unwieldy and hard to maintain.
This is largely due to it being written hastily, without much clue as to
how things would pan out, and also because it ends up mixing policy and
state in such a way that it is very difficult to figure out what's going
on.
Rewrite the Spectre-v2 mitigation so that it clearly separates state from
policy and follows a more structured approach to handling the mitigation.
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The spectre mitigation code is spread over a few different files, which
makes it both hard to follow, but also hard to remove it should we want
to do that in future.
Introduce a new file for housing the spectre mitigations, and populate
it with the spectre-v1 reporting code to start with.
Signed-off-by: Will Deacon <will@kernel.org>
|
|
For better or worse, the world knows about "Spectre" and not about
"Branch predictor hardening". Rename ARM64_HARDEN_BRANCH_PREDICTOR to
ARM64_SPECTRE_V2 as part of moving all of the Spectre mitigations into
their own little corner.
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Use is_hyp_mode_available() to detect whether or not we need to patch
the KVM vectors for branch hardening, which avoids the need to take the
vector pointers as parameters.
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The removal of CONFIG_HARDEN_BRANCH_PREDICTOR means that
CONFIG_KVM_INDIRECT_VECTORS is synonymous with CONFIG_RANDOMIZE_BASE,
so replace it.
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The spectre mitigations are too configurable for their own good, leading
to confusing logic trying to figure out when we should mitigate and when
we shouldn't. Although the plethora of command-line options need to stick
around for backwards compatibility, the default-on CONFIG options that
depend on EXPERT can be dropped, as the mitigations only do anything if
the system is vulnerable, a mitigation is available and the command-line
hasn't disabled it.
Remove CONFIG_HARDEN_BRANCH_PREDICTOR and CONFIG_ARM64_SSBD in favour of
enabling this code unconditionally.
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Commit 606f8e7b27bf ("arm64: capabilities: Use linear array for
detection and verification") changed the way we deal with per-CPU errata
by only calling the .matches() callback until one CPU is found to be
affected. At this point, .matches() stop being called, and .cpu_enable()
will be called on all CPUs.
This breaks the ARCH_WORKAROUND_2 handling, as only a single CPU will be
mitigated.
In order to address this, forcefully call the .matches() callback from a
.cpu_enable() callback, which brings us back to the original behaviour.
Fixes: 606f8e7b27bf ("arm64: capabilities: Use linear array for detection and verification")
Cc: <stable@vger.kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Commit 73f381660959 ("arm64: Advertise mitigation of Spectre-v2, or lack
thereof") changed the way we deal with ARCH_WORKAROUND_1, by moving most
of the enabling code to the .matches() callback.
This has the unfortunate effect that the workaround gets only enabled on
the first affected CPU, and no other.
In order to address this, forcefully call the .matches() callback from a
.cpu_enable() callback, which brings us back to the original behaviour.
Fixes: 73f381660959 ("arm64: Advertise mitigation of Spectre-v2, or lack thereof")
Cc: <stable@vger.kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
We seem to be pretending that we don't have any firmware mitigation
when KVM is not compiled in, which is not quite expected.
Bring back the mitigation in this case.
Fixes: 4db61fef16a1 ("arm64: kvm: Modernize __smccc_workaround_1_smc_start annotations")
Cc: <stable@vger.kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Now that we allow CPUs affected by erratum 1418040 to come in late,
this prevents their unaffected sibblings from coming in late (or
coming back after a suspend or hotplug-off, which amounts to the
same thing).
To allow this, we need to add ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU,
which amounts to set .type to ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE.
Fixes: bf87bb0881d0 ("arm64: Allow booting of late CPUs affected by erratum 1418040")
Reported-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org>
Tested-by: Matthias Kaehlcke <mka@chromium.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200911181611.2073183-1-maz@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
As we can now switch from a system that isn't affected by 1418040
to a system that globally is affected, let's allow affected CPUs
to come in at a later time.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200731173824.107480-3-maz@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-next-5.6
KVM/arm64 updates for Linux 5.9:
- Split the VHE and nVHE hypervisor code bases, build the EL2 code
separately, allowing for the VHE code to now be built with instrumentation
- Level-based TLB invalidation support
- Restructure of the vcpu register storage to accomodate the NV code
- Pointer Authentication available for guests on nVHE hosts
- Simplification of the system register table parsing
- MMU cleanups and fixes
- A number of post-32bit cleanups and other fixes
|
|
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The HARDEN_EL2_VECTORS config maps vectors at a fixed location on cores which
are susceptible to Spector variant 3a (A57, A72) to prevent defeating hyp
layout randomization by leaking the value of VBAR_EL2.
Since this feature is only applicable when EL2 layout randomization is enabled,
unify both behind the same RANDOMIZE_BASE Kconfig. Majority of code remains
conditional on a capability selected for the affected cores.
Signed-off-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200721094445.82184-3-dbrazdil@google.com
|
|
When the erratum_1463225 array was introduced a sentinel at the end was
missing thus causing a KASAN: global-out-of-bounds in
is_affected_midr_range_list on arm64 error.
Fixes: a9e821b89daa ("arm64: Add KRYO4XX gold CPU cores to erratum list 1463225 and 1418040")
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org>
Link: https://lore.kernel.org/linux-arm-kernel/CA+G9fYs3EavpU89-rTQfqQ9GgxAMgMAk7jiiVrfP0yxj5s+Q6g@mail.gmail.com/
Link: https://lore.kernel.org/r/20200709051345.14544-1-f.fainelli@gmail.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
KRYO4XX silver/LITTLE CPU cores with revision r1p0 are affected by
erratum 1530923 and 1024718, so add them to the respective list.
The variant and revision bits are implementation defined and are
different from the their Cortex CPU counterparts on which they are
based on, i.e., r1p0 is equivalent to rdpe.
Signed-off-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org>
Link: https://lore.kernel.org/r/7013e8a3f857ca7e82863cc9e34a614293d7f80c.1593539394.git.saiprakash.ranjan@codeaurora.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
KRYO4XX gold/big CPU core revisions r0p0 to r3p1 are affected by
erratum 1463225 and 1418040, so add them to the respective list.
The variant and revision bits are implementation defined and are
different from the their Cortex CPU counterparts on which they are
based on, i.e., (r0p0 to r3p1) is equivalent to (rcpe to rfpf).
Signed-off-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org>
Link: https://lore.kernel.org/r/83780e80c6377c12ca51b5d53186b61241685e49.1593539394.git.saiprakash.ranjan@codeaurora.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
QCOM KRYO{3,4}XX silver/LITTLE CPU cores are based on
Cortex-A55 and are SSB safe, hence add them to SSB
safelist -> arm64_ssb_cpus[].
Reported-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20200625103123.7240-1-saiprakash.ranjan@codeaurora.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Pull kvm updates from Paolo Bonzini:
"ARM:
- Move the arch-specific code into arch/arm64/kvm
- Start the post-32bit cleanup
- Cherry-pick a few non-invasive pre-NV patches
x86:
- Rework of TLB flushing
- Rework of event injection, especially with respect to nested
virtualization
- Nested AMD event injection facelift, building on the rework of
generic code and fixing a lot of corner cases
- Nested AMD live migration support
- Optimization for TSC deadline MSR writes and IPIs
- Various cleanups
- Asynchronous page fault cleanups (from tglx, common topic branch
with tip tree)
- Interrupt-based delivery of asynchronous "page ready" events (host
side)
- Hyper-V MSRs and hypercalls for guest debugging
- VMX preemption timer fixes
s390:
- Cleanups
Generic:
- switch vCPU thread wakeup from swait to rcuwait
The other architectures, and the guest side of the asynchronous page
fault work, will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (256 commits)
KVM: selftests: fix rdtsc() for vmx_tsc_adjust_test
KVM: check userspace_addr for all memslots
KVM: selftests: update hyperv_cpuid with SynDBG tests
x86/kvm/hyper-v: Add support for synthetic debugger via hypercalls
x86/kvm/hyper-v: enable hypercalls regardless of hypercall page
x86/kvm/hyper-v: Add support for synthetic debugger interface
x86/hyper-v: Add synthetic debugger definitions
KVM: selftests: VMX preemption timer migration test
KVM: nVMX: Fix VMX preemption timer migration
x86/kvm/hyper-v: Explicitly align hcall param for kvm_hyperv_exit
KVM: x86/pmu: Support full width counting
KVM: x86/pmu: Tweak kvm_pmu_get_msr to pass 'struct msr_data' in
KVM: x86: announce KVM_FEATURE_ASYNC_PF_INT
KVM: x86: acknowledgment mechanism for async pf page ready notifications
KVM: x86: interrupt based APF 'page ready' event delivery
KVM: introduce kvm_read_guest_offset_cached()
KVM: rename kvm_arch_can_inject_async_page_present() to kvm_arch_can_dequeue_async_page_present()
KVM: x86: extend struct kvm_vcpu_pv_apf_data with token info
Revert "KVM: async_pf: Fix #DF due to inject "Page not Present" and "Page Ready" exceptions simultaneously"
KVM: VMX: Replace zero-length array with flexible-array
...
|
|
KVM CPU errata rework
(Andrew Scull and Marc Zyngier)
* for-next/kvm/errata:
KVM: arm64: Move __load_guest_stage2 to kvm_mmu.h
arm64: Unify WORKAROUND_SPECULATIVE_AT_{NVHE,VHE}
|
|
CONFIG_KVM_ARM_HOST is just a proxy for CONFIG_KVM, so remove it in favour
of the latter.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200505154520.194120-2-tabba@google.com
|
|
Several actions are not mitigations for a single erratum, but for
multiple errata. However, printing a line like
CPU features: detected: ARM errata 1165522, 1530923
may give the false impression that all three listed errata have been
detected. This can confuse the user, who may think his Cortex-A55 is
suddenly affected by a Cortex-A76 erratum.
Add "or" to all descriptions for mitigations for multiple errata, to
make it clear that only one or more of the errata printed are
applicable, and not necessarily all of them.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://lore.kernel.org/r/20200512145255.5520-1-geert+renesas@glider.be
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Errata 1165522, 1319367 and 1530923 each allow TLB entries to be
allocated as a result of a speculative AT instruction. In order to
avoid mandating VHE on certain affected CPUs, apply the workaround to
both the nVHE and the VHE case for all affected CPUs.
Signed-off-by: Andrew Scull <ascull@google.com>
Acked-by: Will Deacon <will@kernel.org>
CC: Marc Zyngier <maz@kernel.org>
CC: James Morse <james.morse@arm.com>
CC: Suzuki K Poulose <suzuki.poulose@arm.com>
CC: Will Deacon <will@kernel.org>
CC: Steven Price <steven.price@arm.com>
Link: https://lore.kernel.org/r/20200504094858.108917-1-ascull@google.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
When building allnoconfig:
arch/arm64/kernel/cpu_errata.c:174:13: warning: unused function
'call_smc_arch_workaround_1' [-Wunused-function]
static void call_smc_arch_workaround_1(void)
^
1 warning generated.
Follow arch/arm and mark this function as __maybe_unused.
Fixes: 4db61fef16a1 ("arm64: kvm: Modernize __smccc_workaround_1_smc_start annotations")
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In an effort to clarify and simplify the annotation of assembly functions
in the kernel new macros have been introduced. These replace ENTRY and
ENDPROC with separate annotations for standard C callable functions,
data and code with different calling conventions.
Using these for __smccc_workaround_1_smc is more involved than for most
symbols as this symbol is annotated quite unusually, rather than just have
the explicit symbol we define _start and _end symbols which we then use to
compute the length. This does not play at all nicely with the new style
macros. Instead define a constant for the size of the function and use that
in both the C code and for .org based size checks in the assembly code.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
|
|
We have recently introduced new macros for annotating assembly symbols
for things that aren't C functions, SYM_CODE_START() and SYM_CODE_END(),
in an effort to clarify and simplify our annotations of assembly files.
Using these for __bp_harden_hyp_vecs is more involved than for most symbols
as this symbol is annotated quite unusually as rather than just have the
explicit symbol we define _start and _end symbols which we then use to
compute the length. This does not play at all nicely with the new style
macros. Since the size of the vectors is a known constant which won't vary
the simplest thing to do is simply to drop the separate _start and _end
symbols and just use a #define for the size.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
|
|
* for-next/errata: (3 commits)
arm64: Workaround for Cortex-A55 erratum 1530923
...
|
|
The "silver" KRYO3XX and KRYO4XX CPU cores are not affected by Spectre
variant 2. Add them to spectre_v2 safe list to correct the spurious
ARM_SMCCC_ARCH_WORKAROUND_1 warning and vulnerability status reported
under sysfs.
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Tested-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org>
[will: tweaked commit message to remove stale mention of "gold" cores]
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Cortex-A55 erratum 1530923 allows TLB entries to be allocated as a
result of a speculative AT instruction. This may happen in the middle of
a guest world switch while the relevant VMSA configuration is in an
inconsistent state, leading to erroneous content being allocated into
TLBs.
The same workaround as is used for Cortex-A76 erratum 1165522
(WORKAROUND_SPECULATIVE_AT_VHE) can be used here. Note that this
mandates the use of VHE on affected parts.
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
To match SPECULATIVE_AT_VHE let's also have a generic name for the NVHE
variant.
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Cortex-A55 is affected by a similar erratum, so rename the existing
workaround for errarum 1165522 so it can be used for both errata.
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
HiSilicon Taishan v110 CPUs didn't implement CSV2 field of the
ID_AA64PFR0_EL1, but spectre-v2 is mitigated by hardware, so
whitelist the MIDR in the safe list.
Signed-off-by: Wei Li <liwei391@huawei.com>
[hanjun: re-write the commit log]
Signed-off-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Pull KVM updates from Paolo Bonzini:
"ARM:
- data abort report and injection
- steal time support
- GICv4 performance improvements
- vgic ITS emulation fixes
- simplify FWB handling
- enable halt polling counters
- make the emulated timer PREEMPT_RT compliant
s390:
- small fixes and cleanups
- selftest improvements
- yield improvements
PPC:
- add capability to tell userspace whether we can single-step the
guest
- improve the allocation of XIVE virtual processor IDs
- rewrite interrupt synthesis code to deliver interrupts in virtual
mode when appropriate.
- minor cleanups and improvements.
x86:
- XSAVES support for AMD
- more accurate report of nested guest TSC to the nested hypervisor
- retpoline optimizations
- support for nested 5-level page tables
- PMU virtualization optimizations, and improved support for nested
PMU virtualization
- correct latching of INITs for nested virtualization
- IOAPIC optimization
- TSX_CTRL virtualization for more TAA happiness
- improved allocation and flushing of SEV ASIDs
- many bugfixes and cleanups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
kvm: nVMX: Relax guest IA32_FEATURE_CONTROL constraints
KVM: x86: Grab KVM's srcu lock when setting nested state
KVM: x86: Open code shared_msr_update() in its only caller
KVM: Fix jump label out_free_* in kvm_init()
KVM: x86: Remove a spurious export of a static function
KVM: x86: create mmu/ subdirectory
KVM: nVMX: Remove unnecessary TLB flushes on L1<->L2 switches when L1 use apic-access-page
KVM: x86: remove set but not used variable 'called'
KVM: nVMX: Do not mark vmcs02->apic_access_page as dirty when unpinning
KVM: vmx: use MSR_IA32_TSX_CTRL to hard-disable TSX on guest that lack it
KVM: vmx: implement MSR_IA32_TSX_CTRL disable RTM functionality
KVM: x86: implement MSR_IA32_TSX_CTRL effect on CPUID
KVM: x86: do not modify masked bits of shared MSRs
KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES
KVM: PPC: Book3S HV: XIVE: Fix potential page leak on error path
KVM: PPC: Book3S HV: XIVE: Free previous EQ page when setting up a new one
KVM: nVMX: Assume TLB entries of L1 and L2 are tagged differently if L0 use EPT
KVM: x86: Unexport kvm_vcpu_reload_apic_access_page()
KVM: nVMX: add CR4_LA57 bit to nested CR4_FIXED1
KVM: nVMX: Use semi-colon instead of comma for exit-handlers initialization
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Apart from the arm64-specific bits (core arch and perf, new arm64
selftests), it touches the generic cow_user_page() (reviewed by
Kirill) together with a macro for x86 to preserve the existing
behaviour on this architecture.
Summary:
- On ARMv8 CPUs without hardware updates of the access flag, avoid
failing cow_user_page() on PFN mappings if the pte is old. The
patches introduce an arch_faults_on_old_pte() macro, defined as
false on x86. When true, cow_user_page() makes the pte young before
attempting __copy_from_user_inatomic().
- Covert the synchronous exception handling paths in
arch/arm64/kernel/entry.S to C.
- FTRACE_WITH_REGS support for arm64.
- ZONE_DMA re-introduced on arm64 to support Raspberry Pi 4
- Several kselftest cases specific to arm64, together with a
MAINTAINERS update for these files (moved to the ARM64 PORT entry).
- Workaround for a Neoverse-N1 erratum where the CPU may fetch stale
instructions under certain conditions.
- Workaround for Cortex-A57 and A72 errata where the CPU may
speculatively execute an AT instruction and associate a VMID with
the wrong guest page tables (corrupting the TLB).
- Perf updates for arm64: additional PMU topologies on HiSilicon
platforms, support for CCN-512 interconnect, AXI ID filtering in
the IMX8 DDR PMU, support for the CCPI2 uncore PMU in ThunderX2.
- GICv3 optimisation to avoid a heavy barrier when accessing the
ICC_PMR_EL1 register.
- ELF HWCAP documentation updates and clean-up.
- SMC calling convention conduit code clean-up.
- KASLR diagnostics printed during boot
- NVIDIA Carmel CPU added to the KPTI whitelist
- Some arm64 mm clean-ups: use generic free_initrd_mem(), remove
stale macro, simplify calculation in __create_pgd_mapping(), typos.
- Kconfig clean-ups: CMDLINE_FORCE to depend on CMDLINE, choice for
endinanness to help with allmodconfig"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (93 commits)
arm64: Kconfig: add a choice for endianness
kselftest: arm64: fix spelling mistake "contiguos" -> "contiguous"
arm64: Kconfig: make CMDLINE_FORCE depend on CMDLINE
MAINTAINERS: Add arm64 selftests to the ARM64 PORT entry
arm64: kaslr: Check command line before looking for a seed
arm64: kaslr: Announce KASLR status on boot
kselftest: arm64: fake_sigreturn_misaligned_sp
kselftest: arm64: fake_sigreturn_bad_size
kselftest: arm64: fake_sigreturn_duplicated_fpsimd
kselftest: arm64: fake_sigreturn_missing_fpsimd
kselftest: arm64: fake_sigreturn_bad_size_for_magic0
kselftest: arm64: fake_sigreturn_bad_magic
kselftest: arm64: add helper get_current_context
kselftest: arm64: extend test_init functionalities
kselftest: arm64: mangle_pstate_invalid_mode_el[123][ht]
kselftest: arm64: mangle_pstate_invalid_daif_bits
kselftest: arm64: mangle_pstate_invalid_compat_toggle and common utils
kselftest: arm64: extend toplevel skeleton Makefile
drivers/perf: hisi: update the sccl_id/ccl_id for certain HiSilicon platform
arm64: mm: reserve CMA and crashkernel in ZONE_DMA32
...
|
|
Conflicts:
arch/x86/kvm/vmx/vmx.c
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for Linux 5.5:
- Allow non-ISV data aborts to be reported to userspace
- Allow injection of data aborts from userspace
- Expose stolen time to guests
- GICv4 performance improvements
- vgic ITS emulation fixes
- Simplify FWB handling
- Enable halt pool counters
- Make the emulated timer PREEMPT_RT compliant
Conflicts:
include/uapi/linux/kvm.h
|
|
'for-next/zone-dma', 'for-next/relax-icc_pmr_el1-sync', 'for-next/double-page-fault', 'for-next/misc', 'for-next/kselftest-arm64-signal' and 'for-next/kaslr-diagnostics' into for-next/core
* for-next/elf-hwcap-docs:
: Update the arm64 ELF HWCAP documentation
docs/arm64: cpu-feature-registers: Rewrite bitfields that don't follow [e, s]
docs/arm64: cpu-feature-registers: Documents missing visible fields
docs/arm64: elf_hwcaps: Document HWCAP_SB
docs/arm64: elf_hwcaps: sort the HWCAP{, 2} documentation by ascending value
* for-next/smccc-conduit-cleanup:
: SMC calling convention conduit clean-up
firmware: arm_sdei: use common SMCCC_CONDUIT_*
firmware/psci: use common SMCCC_CONDUIT_*
arm: spectre-v2: use arm_smccc_1_1_get_conduit()
arm64: errata: use arm_smccc_1_1_get_conduit()
arm/arm64: smccc/psci: add arm_smccc_1_1_get_conduit()
* for-next/zone-dma:
: Reintroduction of ZONE_DMA for Raspberry Pi 4 support
arm64: mm: reserve CMA and crashkernel in ZONE_DMA32
dma/direct: turn ARCH_ZONE_DMA_BITS into a variable
arm64: Make arm64_dma32_phys_limit static
arm64: mm: Fix unused variable warning in zone_sizes_init
mm: refresh ZONE_DMA and ZONE_DMA32 comments in 'enum zone_type'
arm64: use both ZONE_DMA and ZONE_DMA32
arm64: rename variables used to calculate ZONE_DMA32's size
arm64: mm: use arm64_dma_phys_limit instead of calling max_zone_dma_phys()
* for-next/relax-icc_pmr_el1-sync:
: Relax ICC_PMR_EL1 (GICv3) accesses when ICC_CTLR_EL1.PMHE is clear
arm64: Document ICC_CTLR_EL3.PMHE setting requirements
arm64: Relax ICC_PMR_EL1 accesses when ICC_CTLR_EL1.PMHE is clear
* for-next/double-page-fault:
: Avoid a double page fault in __copy_from_user_inatomic() if hw does not support auto Access Flag
mm: fix double page fault on arm64 if PTE_AF is cleared
x86/mm: implement arch_faults_on_old_pte() stub on x86
arm64: mm: implement arch_faults_on_old_pte() on arm64
arm64: cpufeature: introduce helper cpu_has_hw_af()
* for-next/misc:
: Various fixes and clean-ups
arm64: kpti: Add NVIDIA's Carmel core to the KPTI whitelist
arm64: mm: Remove MAX_USER_VA_BITS definition
arm64: mm: simplify the page end calculation in __create_pgd_mapping()
arm64: print additional fault message when executing non-exec memory
arm64: psci: Reduce the waiting time for cpu_psci_cpu_kill()
arm64: pgtable: Correct typo in comment
arm64: docs: cpu-feature-registers: Document ID_AA64PFR1_EL1
arm64: cpufeature: Fix typos in comment
arm64/mm: Poison initmem while freeing with free_reserved_area()
arm64: use generic free_initrd_mem()
arm64: simplify syscall wrapper ifdeffery
* for-next/kselftest-arm64-signal:
: arm64-specific kselftest support with signal-related test-cases
kselftest: arm64: fake_sigreturn_misaligned_sp
kselftest: arm64: fake_sigreturn_bad_size
kselftest: arm64: fake_sigreturn_duplicated_fpsimd
kselftest: arm64: fake_sigreturn_missing_fpsimd
kselftest: arm64: fake_sigreturn_bad_size_for_magic0
kselftest: arm64: fake_sigreturn_bad_magic
kselftest: arm64: add helper get_current_context
kselftest: arm64: extend test_init functionalities
kselftest: arm64: mangle_pstate_invalid_mode_el[123][ht]
kselftest: arm64: mangle_pstate_invalid_daif_bits
kselftest: arm64: mangle_pstate_invalid_compat_toggle and common utils
kselftest: arm64: extend toplevel skeleton Makefile
* for-next/kaslr-diagnostics:
: Provide diagnostics on boot for KASLR
arm64: kaslr: Check command line before looking for a seed
arm64: kaslr: Announce KASLR status on boot
|