summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/e1000e/mac.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/intel/e1000e/mac.c')
-rw-r--r--drivers/net/ethernet/intel/e1000e/mac.c135
1 files changed, 45 insertions, 90 deletions
diff --git a/drivers/net/ethernet/intel/e1000e/mac.c b/drivers/net/ethernet/intel/e1000e/mac.c
index a13439928488..54d9dafaf126 100644
--- a/drivers/net/ethernet/intel/e1000e/mac.c
+++ b/drivers/net/ethernet/intel/e1000e/mac.c
@@ -73,8 +73,7 @@ void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
struct e1000_bus_info *bus = &hw->bus;
u32 reg;
- /*
- * The status register reports the correct function number
+ /* The status register reports the correct function number
* for the device regardless of function swap state.
*/
reg = er32(STATUS);
@@ -210,8 +209,7 @@ s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
return 0;
}
- /*
- * We have a valid alternate MAC address, and we want to treat it the
+ /* We have a valid alternate MAC address, and we want to treat it the
* same as the normal permanent MAC address stored by the HW into the
* RAR. Do this by mapping this address into RAR0.
*/
@@ -233,8 +231,7 @@ void e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
- /*
- * HW expects these in little endian so we reverse the byte order
+ /* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
@@ -246,8 +243,7 @@ void e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
if (rar_low || rar_high)
rar_high |= E1000_RAH_AV;
- /*
- * Some bridges will combine consecutive 32-bit writes into
+ /* Some bridges will combine consecutive 32-bit writes into
* a single burst write, which will malfunction on some parts.
* The flushes avoid this.
*/
@@ -273,15 +269,13 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
- /*
- * For a mc_filter_type of 0, bit_shift is the number of left-shifts
+ /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
- /*
- * The portion of the address that is used for the hash table
+ /* The portion of the address that is used for the hash table
* is determined by the mc_filter_type setting.
* The algorithm is such that there is a total of 8 bits of shifting.
* The bit_shift for a mc_filter_type of 0 represents the number of
@@ -423,8 +417,7 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
s32 ret_val;
bool link;
- /*
- * We only want to go out to the PHY registers to see if Auto-Neg
+ /* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
@@ -432,8 +425,7 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
if (!mac->get_link_status)
return 0;
- /*
- * First we want to see if the MII Status Register reports
+ /* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
@@ -446,28 +438,24 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
mac->get_link_status = false;
- /*
- * Check if there was DownShift, must be checked
+ /* Check if there was DownShift, must be checked
* immediately after link-up
*/
e1000e_check_downshift(hw);
- /*
- * If we are forcing speed/duplex, then we simply return since
+ /* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg)
return -E1000_ERR_CONFIG;
- /*
- * Auto-Neg is enabled. Auto Speed Detection takes care
+ /* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
mac->ops.config_collision_dist(hw);
- /*
- * Configure Flow Control now that Auto-Neg has completed.
+ /* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
@@ -498,8 +486,7 @@ s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
status = er32(STATUS);
rxcw = er32(RXCW);
- /*
- * If we don't have link (auto-negotiation failed or link partner
+ /* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), the cable is plugged in (we have signal),
* and our link partner is not trying to auto-negotiate with us (we
* are receiving idles or data), we need to force link up. We also
@@ -530,8 +517,7 @@ s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
return ret_val;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
+ /* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
@@ -565,8 +551,7 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
status = er32(STATUS);
rxcw = er32(RXCW);
- /*
- * If we don't have link (auto-negotiation failed or link partner
+ /* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), and our link partner is not trying to
* auto-negotiate with us (we are receiving idles or data),
* we need to force link up. We also need to give auto-negotiation
@@ -595,8 +580,7 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
return ret_val;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
+ /* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
@@ -607,8 +591,7 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
mac->serdes_has_link = true;
} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
- /*
- * If we force link for non-auto-negotiation switch, check
+ /* If we force link for non-auto-negotiation switch, check
* link status based on MAC synchronization for internal
* serdes media type.
*/
@@ -665,8 +648,7 @@ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
s32 ret_val;
u16 nvm_data;
- /*
- * Read and store word 0x0F of the EEPROM. This word contains bits
+ /* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
@@ -705,15 +687,13 @@ s32 e1000e_setup_link_generic(struct e1000_hw *hw)
{
s32 ret_val;
- /*
- * In the case of the phy reset being blocked, we already have a link.
+ /* In the case of the phy reset being blocked, we already have a link.
* We do not need to set it up again.
*/
if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
return 0;
- /*
- * If requested flow control is set to default, set flow control
+ /* If requested flow control is set to default, set flow control
* based on the EEPROM flow control settings.
*/
if (hw->fc.requested_mode == e1000_fc_default) {
@@ -722,8 +702,7 @@ s32 e1000e_setup_link_generic(struct e1000_hw *hw)
return ret_val;
}
- /*
- * Save off the requested flow control mode for use later. Depending
+ /* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
@@ -735,8 +714,7 @@ s32 e1000e_setup_link_generic(struct e1000_hw *hw)
if (ret_val)
return ret_val;
- /*
- * Initialize the flow control address, type, and PAUSE timer
+ /* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
@@ -763,8 +741,7 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
struct e1000_mac_info *mac = &hw->mac;
u32 txcw;
- /*
- * Check for a software override of the flow control settings, and
+ /* Check for a software override of the flow control settings, and
* setup the device accordingly. If auto-negotiation is enabled, then
* software will have to set the "PAUSE" bits to the correct value in
* the Transmit Config Word Register (TXCW) and re-start auto-
@@ -786,8 +763,7 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break;
case e1000_fc_rx_pause:
- /*
- * Rx Flow control is enabled and Tx Flow control is disabled
+ /* Rx Flow control is enabled and Tx Flow control is disabled
* by a software over-ride. Since there really isn't a way to
* advertise that we are capable of Rx Pause ONLY, we will
* advertise that we support both symmetric and asymmetric Rx
@@ -797,15 +773,13 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
case e1000_fc_tx_pause:
- /*
- * Tx Flow control is enabled, and Rx Flow control is disabled,
+ /* Tx Flow control is enabled, and Rx Flow control is disabled,
* by a software over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break;
case e1000_fc_full:
- /*
- * Flow control (both Rx and Tx) is enabled by a software
+ /* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
@@ -835,8 +809,7 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
u32 i, status;
s32 ret_val;
- /*
- * If we have a signal (the cable is plugged in, or assumed true for
+ /* If we have a signal (the cable is plugged in, or assumed true for
* serdes media) then poll for a "Link-Up" indication in the Device
* Status Register. Time-out if a link isn't seen in 500 milliseconds
* seconds (Auto-negotiation should complete in less than 500
@@ -851,8 +824,7 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
if (i == FIBER_LINK_UP_LIMIT) {
e_dbg("Never got a valid link from auto-neg!!!\n");
mac->autoneg_failed = true;
- /*
- * AutoNeg failed to achieve a link, so we'll call
+ /* AutoNeg failed to achieve a link, so we'll call
* mac->check_for_link. This routine will force the
* link up if we detect a signal. This will allow us to
* communicate with non-autonegotiating link partners.
@@ -894,8 +866,7 @@ s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
if (ret_val)
return ret_val;
- /*
- * Since auto-negotiation is enabled, take the link out of reset (the
+ /* Since auto-negotiation is enabled, take the link out of reset (the
* link will be in reset, because we previously reset the chip). This
* will restart auto-negotiation. If auto-negotiation is successful
* then the link-up status bit will be set and the flow control enable
@@ -907,8 +878,7 @@ s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
e1e_flush();
usleep_range(1000, 2000);
- /*
- * For these adapters, the SW definable pin 1 is set when the optics
+ /* For these adapters, the SW definable pin 1 is set when the optics
* detect a signal. If we have a signal, then poll for a "Link-Up"
* indication.
*/
@@ -954,16 +924,14 @@ s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
{
u32 fcrtl = 0, fcrth = 0;
- /*
- * Set the flow control receive threshold registers. Normally,
+ /* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames is not enabled, then these
* registers will be set to 0.
*/
if (hw->fc.current_mode & e1000_fc_tx_pause) {
- /*
- * We need to set up the Receive Threshold high and low water
+ /* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of
* XON frames.
*/
@@ -995,8 +963,7 @@ s32 e1000e_force_mac_fc(struct e1000_hw *hw)
ctrl = er32(CTRL);
- /*
- * Because we didn't get link via the internal auto-negotiation
+ /* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
@@ -1057,8 +1024,7 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
u16 speed, duplex;
- /*
- * Check for the case where we have fiber media and auto-neg failed
+ /* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
@@ -1076,15 +1042,13 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
return ret_val;
}
- /*
- * Check for the case where we have copper media and auto-neg is
+ /* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
- /*
- * Read the MII Status Register and check to see if AutoNeg
+ /* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
@@ -1100,8 +1064,7 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
return ret_val;
}
- /*
- * The AutoNeg process has completed, so we now need to
+ /* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (Address 4) and the Auto_Negotiation Base
* Page Ability Register (Address 5) to determine how
@@ -1115,8 +1078,7 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
if (ret_val)
return ret_val;
- /*
- * Two bits in the Auto Negotiation Advertisement Register
+ /* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
@@ -1151,8 +1113,7 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /*
- * Now we need to check if the user selected Rx ONLY
+ /* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise Rx
* ONLY. Hence, we must now check to see if we need to
@@ -1166,8 +1127,7 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
e_dbg("Flow Control = Rx PAUSE frames only.\n");
}
}
- /*
- * For receiving PAUSE frames ONLY.
+ /* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
@@ -1181,8 +1141,7 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
hw->fc.current_mode = e1000_fc_tx_pause;
e_dbg("Flow Control = Tx PAUSE frames only.\n");
}
- /*
- * For transmitting PAUSE frames ONLY.
+ /* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
@@ -1196,16 +1155,14 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
hw->fc.current_mode = e1000_fc_rx_pause;
e_dbg("Flow Control = Rx PAUSE frames only.\n");
} else {
- /*
- * Per the IEEE spec, at this point flow control
+ /* Per the IEEE spec, at this point flow control
* should be disabled.
*/
hw->fc.current_mode = e1000_fc_none;
e_dbg("Flow Control = NONE.\n");
}
- /*
- * Now we need to do one last check... If we auto-
+ /* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
@@ -1218,8 +1175,7 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
if (duplex == HALF_DUPLEX)
hw->fc.current_mode = e1000_fc_none;
- /*
- * Now we call a subroutine to actually force the MAC
+ /* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000e_force_mac_fc(hw);
@@ -1520,8 +1476,7 @@ s32 e1000e_blink_led_generic(struct e1000_hw *hw)
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
} else {
- /*
- * set the blink bit for each LED that's "on" (0x0E)
+ /* set the blink bit for each LED that's "on" (0x0E)
* in ledctl_mode2
*/
ledctl_blink = hw->mac.ledctl_mode2;