diff options
Diffstat (limited to 'drivers/lguest/core.c')
-rw-r--r-- | drivers/lguest/core.c | 398 |
1 files changed, 0 insertions, 398 deletions
diff --git a/drivers/lguest/core.c b/drivers/lguest/core.c deleted file mode 100644 index 395ed1961dbf..000000000000 --- a/drivers/lguest/core.c +++ /dev/null @@ -1,398 +0,0 @@ -/*P:400 - * This contains run_guest() which actually calls into the Host<->Guest - * Switcher and analyzes the return, such as determining if the Guest wants the - * Host to do something. This file also contains useful helper routines. -:*/ -#include <linux/module.h> -#include <linux/stringify.h> -#include <linux/stddef.h> -#include <linux/io.h> -#include <linux/mm.h> -#include <linux/sched/signal.h> -#include <linux/vmalloc.h> -#include <linux/cpu.h> -#include <linux/freezer.h> -#include <linux/highmem.h> -#include <linux/slab.h> -#include <asm/paravirt.h> -#include <asm/pgtable.h> -#include <linux/uaccess.h> -#include <asm/poll.h> -#include <asm/asm-offsets.h> -#include "lg.h" - -unsigned long switcher_addr; -struct page **lg_switcher_pages; -static struct vm_struct *switcher_text_vma; -static struct vm_struct *switcher_stacks_vma; - -/* This One Big lock protects all inter-guest data structures. */ -DEFINE_MUTEX(lguest_lock); - -/*H:010 - * We need to set up the Switcher at a high virtual address. Remember the - * Switcher is a few hundred bytes of assembler code which actually changes the - * CPU to run the Guest, and then changes back to the Host when a trap or - * interrupt happens. - * - * The Switcher code must be at the same virtual address in the Guest as the - * Host since it will be running as the switchover occurs. - * - * Trying to map memory at a particular address is an unusual thing to do, so - * it's not a simple one-liner. - */ -static __init int map_switcher(void) -{ - int i, err; - - /* - * Map the Switcher in to high memory. - * - * It turns out that if we choose the address 0xFFC00000 (4MB under the - * top virtual address), it makes setting up the page tables really - * easy. - */ - - /* We assume Switcher text fits into a single page. */ - if (end_switcher_text - start_switcher_text > PAGE_SIZE) { - printk(KERN_ERR "lguest: switcher text too large (%zu)\n", - end_switcher_text - start_switcher_text); - return -EINVAL; - } - - /* - * We allocate an array of struct page pointers. map_vm_area() wants - * this, rather than just an array of pages. - */ - lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0]) - * TOTAL_SWITCHER_PAGES, - GFP_KERNEL); - if (!lg_switcher_pages) { - err = -ENOMEM; - goto out; - } - - /* - * Now we actually allocate the pages. The Guest will see these pages, - * so we make sure they're zeroed. - */ - for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) { - lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); - if (!lg_switcher_pages[i]) { - err = -ENOMEM; - goto free_some_pages; - } - } - - /* - * Copy in the compiled-in Switcher code (from x86/switcher_32.S). - * It goes in the first page, which we map in momentarily. - */ - memcpy(kmap(lg_switcher_pages[0]), start_switcher_text, - end_switcher_text - start_switcher_text); - kunmap(lg_switcher_pages[0]); - - /* - * We place the Switcher underneath the fixmap area, which is the - * highest virtual address we can get. This is important, since we - * tell the Guest it can't access this memory, so we want its ceiling - * as high as possible. - */ - switcher_addr = FIXADDR_START - TOTAL_SWITCHER_PAGES*PAGE_SIZE; - - /* - * Now we reserve the "virtual memory area"s we want. We might - * not get them in theory, but in practice it's worked so far. - * - * We want the switcher text to be read-only and executable, and - * the stacks to be read-write and non-executable. - */ - switcher_text_vma = __get_vm_area(PAGE_SIZE, VM_ALLOC|VM_NO_GUARD, - switcher_addr, - switcher_addr + PAGE_SIZE); - - if (!switcher_text_vma) { - err = -ENOMEM; - printk("lguest: could not map switcher pages high\n"); - goto free_pages; - } - - switcher_stacks_vma = __get_vm_area(SWITCHER_STACK_PAGES * PAGE_SIZE, - VM_ALLOC|VM_NO_GUARD, - switcher_addr + PAGE_SIZE, - switcher_addr + TOTAL_SWITCHER_PAGES * PAGE_SIZE); - if (!switcher_stacks_vma) { - err = -ENOMEM; - printk("lguest: could not map switcher pages high\n"); - goto free_text_vma; - } - - /* - * This code actually sets up the pages we've allocated to appear at - * switcher_addr. map_vm_area() takes the vma we allocated above, the - * kind of pages we're mapping (kernel text pages and kernel writable - * pages respectively), and a pointer to our array of struct pages. - */ - err = map_vm_area(switcher_text_vma, PAGE_KERNEL_RX, lg_switcher_pages); - if (err) { - printk("lguest: text map_vm_area failed: %i\n", err); - goto free_vmas; - } - - err = map_vm_area(switcher_stacks_vma, PAGE_KERNEL, - lg_switcher_pages + SWITCHER_TEXT_PAGES); - if (err) { - printk("lguest: stacks map_vm_area failed: %i\n", err); - goto free_vmas; - } - - /* - * Now the Switcher is mapped at the right address, we can't fail! - */ - printk(KERN_INFO "lguest: mapped switcher at %p\n", - switcher_text_vma->addr); - /* And we succeeded... */ - return 0; - -free_vmas: - /* Undoes map_vm_area and __get_vm_area */ - vunmap(switcher_stacks_vma->addr); -free_text_vma: - vunmap(switcher_text_vma->addr); -free_pages: - i = TOTAL_SWITCHER_PAGES; -free_some_pages: - for (--i; i >= 0; i--) - __free_pages(lg_switcher_pages[i], 0); - kfree(lg_switcher_pages); -out: - return err; -} -/*:*/ - -/* Cleaning up the mapping when the module is unloaded is almost... too easy. */ -static void unmap_switcher(void) -{ - unsigned int i; - - /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */ - vunmap(switcher_text_vma->addr); - vunmap(switcher_stacks_vma->addr); - /* Now we just need to free the pages we copied the switcher into */ - for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) - __free_pages(lg_switcher_pages[i], 0); - kfree(lg_switcher_pages); -} - -/*H:032 - * Dealing With Guest Memory. - * - * Before we go too much further into the Host, we need to grok the routines - * we use to deal with Guest memory. - * - * When the Guest gives us (what it thinks is) a physical address, we can use - * the normal copy_from_user() & copy_to_user() on the corresponding place in - * the memory region allocated by the Launcher. - * - * But we can't trust the Guest: it might be trying to access the Launcher - * code. We have to check that the range is below the pfn_limit the Launcher - * gave us. We have to make sure that addr + len doesn't give us a false - * positive by overflowing, too. - */ -bool lguest_address_ok(const struct lguest *lg, - unsigned long addr, unsigned long len) -{ - return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr); -} - -/* - * This routine copies memory from the Guest. Here we can see how useful the - * kill_lguest() routine we met in the Launcher can be: we return a random - * value (all zeroes) instead of needing to return an error. - */ -void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes) -{ - if (!lguest_address_ok(cpu->lg, addr, bytes) - || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) { - /* copy_from_user should do this, but as we rely on it... */ - memset(b, 0, bytes); - kill_guest(cpu, "bad read address %#lx len %u", addr, bytes); - } -} - -/* This is the write (copy into Guest) version. */ -void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b, - unsigned bytes) -{ - if (!lguest_address_ok(cpu->lg, addr, bytes) - || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0) - kill_guest(cpu, "bad write address %#lx len %u", addr, bytes); -} -/*:*/ - -/*H:030 - * Let's jump straight to the the main loop which runs the Guest. - * Remember, this is called by the Launcher reading /dev/lguest, and we keep - * going around and around until something interesting happens. - */ -int run_guest(struct lg_cpu *cpu, unsigned long __user *user) -{ - /* If the launcher asked for a register with LHREQ_GETREG */ - if (cpu->reg_read) { - if (put_user(*cpu->reg_read, user)) - return -EFAULT; - cpu->reg_read = NULL; - return sizeof(*cpu->reg_read); - } - - /* We stop running once the Guest is dead. */ - while (!cpu->lg->dead) { - unsigned int irq; - bool more; - - /* First we run any hypercalls the Guest wants done. */ - if (cpu->hcall) - do_hypercalls(cpu); - - /* Do we have to tell the Launcher about a trap? */ - if (cpu->pending.trap) { - if (copy_to_user(user, &cpu->pending, - sizeof(cpu->pending))) - return -EFAULT; - return sizeof(cpu->pending); - } - - /* - * All long-lived kernel loops need to check with this horrible - * thing called the freezer. If the Host is trying to suspend, - * it stops us. - */ - try_to_freeze(); - - /* Check for signals */ - if (signal_pending(current)) - return -ERESTARTSYS; - - /* - * Check if there are any interrupts which can be delivered now: - * if so, this sets up the hander to be executed when we next - * run the Guest. - */ - irq = interrupt_pending(cpu, &more); - if (irq < LGUEST_IRQS) - try_deliver_interrupt(cpu, irq, more); - - /* - * Just make absolutely sure the Guest is still alive. One of - * those hypercalls could have been fatal, for example. - */ - if (cpu->lg->dead) - break; - - /* - * If the Guest asked to be stopped, we sleep. The Guest's - * clock timer will wake us. - */ - if (cpu->halted) { - set_current_state(TASK_INTERRUPTIBLE); - /* - * Just before we sleep, make sure no interrupt snuck in - * which we should be doing. - */ - if (interrupt_pending(cpu, &more) < LGUEST_IRQS) - set_current_state(TASK_RUNNING); - else - schedule(); - continue; - } - - /* - * OK, now we're ready to jump into the Guest. First we put up - * the "Do Not Disturb" sign: - */ - local_irq_disable(); - - /* Actually run the Guest until something happens. */ - lguest_arch_run_guest(cpu); - - /* Now we're ready to be interrupted or moved to other CPUs */ - local_irq_enable(); - - /* Now we deal with whatever happened to the Guest. */ - lguest_arch_handle_trap(cpu); - } - - /* Special case: Guest is 'dead' but wants a reboot. */ - if (cpu->lg->dead == ERR_PTR(-ERESTART)) - return -ERESTART; - - /* The Guest is dead => "No such file or directory" */ - return -ENOENT; -} - -/*H:000 - * Welcome to the Host! - * - * By this point your brain has been tickled by the Guest code and numbed by - * the Launcher code; prepare for it to be stretched by the Host code. This is - * the heart. Let's begin at the initialization routine for the Host's lg - * module. - */ -static int __init init(void) -{ - int err; - - /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */ - if (get_kernel_rpl() != 0) { - printk("lguest is afraid of being a guest\n"); - return -EPERM; - } - - /* First we put the Switcher up in very high virtual memory. */ - err = map_switcher(); - if (err) - goto out; - - /* We might need to reserve an interrupt vector. */ - err = init_interrupts(); - if (err) - goto unmap; - - /* /dev/lguest needs to be registered. */ - err = lguest_device_init(); - if (err) - goto free_interrupts; - - /* Finally we do some architecture-specific setup. */ - lguest_arch_host_init(); - - /* All good! */ - return 0; - -free_interrupts: - free_interrupts(); -unmap: - unmap_switcher(); -out: - return err; -} - -/* Cleaning up is just the same code, backwards. With a little French. */ -static void __exit fini(void) -{ - lguest_device_remove(); - free_interrupts(); - unmap_switcher(); - - lguest_arch_host_fini(); -} -/*:*/ - -/* - * The Host side of lguest can be a module. This is a nice way for people to - * play with it. - */ -module_init(init); -module_exit(fini); -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>"); |