summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/tls.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/tls.c')
-rw-r--r--arch/x86/kernel/tls.c25
1 files changed, 23 insertions, 2 deletions
diff --git a/arch/x86/kernel/tls.c b/arch/x86/kernel/tls.c
index 4e942f31b1a7..7fc5e843f247 100644
--- a/arch/x86/kernel/tls.c
+++ b/arch/x86/kernel/tls.c
@@ -29,7 +29,28 @@ static int get_free_idx(void)
static bool tls_desc_okay(const struct user_desc *info)
{
- if (LDT_empty(info))
+ /*
+ * For historical reasons (i.e. no one ever documented how any
+ * of the segmentation APIs work), user programs can and do
+ * assume that a struct user_desc that's all zeros except for
+ * entry_number means "no segment at all". This never actually
+ * worked. In fact, up to Linux 3.19, a struct user_desc like
+ * this would create a 16-bit read-write segment with base and
+ * limit both equal to zero.
+ *
+ * That was close enough to "no segment at all" until we
+ * hardened this function to disallow 16-bit TLS segments. Fix
+ * it up by interpreting these zeroed segments the way that they
+ * were almost certainly intended to be interpreted.
+ *
+ * The correct way to ask for "no segment at all" is to specify
+ * a user_desc that satisfies LDT_empty. To keep everything
+ * working, we accept both.
+ *
+ * Note that there's a similar kludge in modify_ldt -- look at
+ * the distinction between modes 1 and 0x11.
+ */
+ if (LDT_empty(info) || LDT_zero(info))
return true;
/*
@@ -71,7 +92,7 @@ static void set_tls_desc(struct task_struct *p, int idx,
cpu = get_cpu();
while (n-- > 0) {
- if (LDT_empty(info))
+ if (LDT_empty(info) || LDT_zero(info))
desc->a = desc->b = 0;
else
fill_ldt(desc, info);