summaryrefslogtreecommitdiff
path: root/arch/m68k/math-emu/fp_util.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/m68k/math-emu/fp_util.S')
-rw-r--r--arch/m68k/math-emu/fp_util.S1455
1 files changed, 1455 insertions, 0 deletions
diff --git a/arch/m68k/math-emu/fp_util.S b/arch/m68k/math-emu/fp_util.S
new file mode 100644
index 000000000000..a9f7f0129067
--- /dev/null
+++ b/arch/m68k/math-emu/fp_util.S
@@ -0,0 +1,1455 @@
+/*
+ * fp_util.S
+ *
+ * Copyright Roman Zippel, 1997. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, and the entire permission notice in its entirety,
+ * including the disclaimer of warranties.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. The name of the author may not be used to endorse or promote
+ * products derived from this software without specific prior
+ * written permission.
+ *
+ * ALTERNATIVELY, this product may be distributed under the terms of
+ * the GNU General Public License, in which case the provisions of the GPL are
+ * required INSTEAD OF the above restrictions. (This clause is
+ * necessary due to a potential bad interaction between the GPL and
+ * the restrictions contained in a BSD-style copyright.)
+ *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <linux/config.h>
+#include "fp_emu.h"
+
+/*
+ * Here are lots of conversion and normalization functions mainly
+ * used by fp_scan.S
+ * Note that these functions are optimized for "normal" numbers,
+ * these are handled first and exit as fast as possible, this is
+ * especially important for fp_normalize_ext/fp_conv_ext2ext, as
+ * it's called very often.
+ * The register usage is optimized for fp_scan.S and which register
+ * is currently at that time unused, be careful if you want change
+ * something here. %d0 and %d1 is always usable, sometimes %d2 (or
+ * only the lower half) most function have to return the %a0
+ * unmodified, so that the caller can immediately reuse it.
+ */
+
+ .globl fp_ill, fp_end
+
+ | exits from fp_scan:
+ | illegal instruction
+fp_ill:
+ printf ,"fp_illegal\n"
+ rts
+ | completed instruction
+fp_end:
+ tst.l (TASK_MM-8,%a2)
+ jmi 1f
+ tst.l (TASK_MM-4,%a2)
+ jmi 1f
+ tst.l (TASK_MM,%a2)
+ jpl 2f
+1: printf ,"oops:%p,%p,%p\n",3,%a2@(TASK_MM-8),%a2@(TASK_MM-4),%a2@(TASK_MM)
+2: clr.l %d0
+ rts
+
+ .globl fp_conv_long2ext, fp_conv_single2ext
+ .globl fp_conv_double2ext, fp_conv_ext2ext
+ .globl fp_normalize_ext, fp_normalize_double
+ .globl fp_normalize_single, fp_normalize_single_fast
+ .globl fp_conv_ext2double, fp_conv_ext2single
+ .globl fp_conv_ext2long, fp_conv_ext2short
+ .globl fp_conv_ext2byte
+ .globl fp_finalrounding_single, fp_finalrounding_single_fast
+ .globl fp_finalrounding_double
+ .globl fp_finalrounding, fp_finaltest, fp_final
+
+/*
+ * First several conversion functions from a source operand
+ * into the extended format. Note, that only fp_conv_ext2ext
+ * normalizes the number and is always called after the other
+ * conversion functions, which only move the information into
+ * fp_ext structure.
+ */
+
+ | fp_conv_long2ext:
+ |
+ | args: %d0 = source (32-bit long)
+ | %a0 = destination (ptr to struct fp_ext)
+
+fp_conv_long2ext:
+ printf PCONV,"l2e: %p -> %p(",2,%d0,%a0
+ clr.l %d1 | sign defaults to zero
+ tst.l %d0
+ jeq fp_l2e_zero | is source zero?
+ jpl 1f | positive?
+ moveq #1,%d1
+ neg.l %d0
+1: swap %d1
+ move.w #0x3fff+31,%d1
+ move.l %d1,(%a0)+ | set sign / exp
+ move.l %d0,(%a0)+ | set mantissa
+ clr.l (%a0)
+ subq.l #8,%a0 | restore %a0
+ printx PCONV,%a0@
+ printf PCONV,")\n"
+ rts
+ | source is zero
+fp_l2e_zero:
+ clr.l (%a0)+
+ clr.l (%a0)+
+ clr.l (%a0)
+ subq.l #8,%a0
+ printx PCONV,%a0@
+ printf PCONV,")\n"
+ rts
+
+ | fp_conv_single2ext
+ | args: %d0 = source (single-precision fp value)
+ | %a0 = dest (struct fp_ext *)
+
+fp_conv_single2ext:
+ printf PCONV,"s2e: %p -> %p(",2,%d0,%a0
+ move.l %d0,%d1
+ lsl.l #8,%d0 | shift mantissa
+ lsr.l #8,%d1 | exponent / sign
+ lsr.l #7,%d1
+ lsr.w #8,%d1
+ jeq fp_s2e_small | zero / denormal?
+ cmp.w #0xff,%d1 | NaN / Inf?
+ jeq fp_s2e_large
+ bset #31,%d0 | set explizit bit
+ add.w #0x3fff-0x7f,%d1 | re-bias the exponent.
+9: move.l %d1,(%a0)+ | fp_ext.sign, fp_ext.exp
+ move.l %d0,(%a0)+ | high lword of fp_ext.mant
+ clr.l (%a0) | low lword = 0
+ subq.l #8,%a0
+ printx PCONV,%a0@
+ printf PCONV,")\n"
+ rts
+ | zeros and denormalized
+fp_s2e_small:
+ | exponent is zero, so explizit bit is already zero too
+ tst.l %d0
+ jeq 9b
+ move.w #0x4000-0x7f,%d1
+ jra 9b
+ | infinities and NAN
+fp_s2e_large:
+ bclr #31,%d0 | clear explizit bit
+ move.w #0x7fff,%d1
+ jra 9b
+
+fp_conv_double2ext:
+#ifdef FPU_EMU_DEBUG
+ getuser.l %a1@(0),%d0,fp_err_ua2,%a1
+ getuser.l %a1@(4),%d1,fp_err_ua2,%a1
+ printf PCONV,"d2e: %p%p -> %p(",3,%d0,%d1,%a0
+#endif
+ getuser.l (%a1)+,%d0,fp_err_ua2,%a1
+ move.l %d0,%d1
+ lsl.l #8,%d0 | shift high mantissa
+ lsl.l #3,%d0
+ lsr.l #8,%d1 | exponent / sign
+ lsr.l #7,%d1
+ lsr.w #5,%d1
+ jeq fp_d2e_small | zero / denormal?
+ cmp.w #0x7ff,%d1 | NaN / Inf?
+ jeq fp_d2e_large
+ bset #31,%d0 | set explizit bit
+ add.w #0x3fff-0x3ff,%d1 | re-bias the exponent.
+9: move.l %d1,(%a0)+ | fp_ext.sign, fp_ext.exp
+ move.l %d0,(%a0)+
+ getuser.l (%a1)+,%d0,fp_err_ua2,%a1
+ move.l %d0,%d1
+ lsl.l #8,%d0
+ lsl.l #3,%d0
+ move.l %d0,(%a0)
+ moveq #21,%d0
+ lsr.l %d0,%d1
+ or.l %d1,-(%a0)
+ subq.l #4,%a0
+ printx PCONV,%a0@
+ printf PCONV,")\n"
+ rts
+ | zeros and denormalized
+fp_d2e_small:
+ | exponent is zero, so explizit bit is already zero too
+ tst.l %d0
+ jeq 9b
+ move.w #0x4000-0x3ff,%d1
+ jra 9b
+ | infinities and NAN
+fp_d2e_large:
+ bclr #31,%d0 | clear explizit bit
+ move.w #0x7fff,%d1
+ jra 9b
+
+ | fp_conv_ext2ext:
+ | originally used to get longdouble from userspace, now it's
+ | called before arithmetic operations to make sure the number
+ | is normalized [maybe rename it?].
+ | args: %a0 = dest (struct fp_ext *)
+ | returns 0 in %d0 for a NaN, otherwise 1
+
+fp_conv_ext2ext:
+ printf PCONV,"e2e: %p(",1,%a0
+ printx PCONV,%a0@
+ printf PCONV,"), "
+ move.l (%a0)+,%d0
+ cmp.w #0x7fff,%d0 | Inf / NaN?
+ jeq fp_e2e_large
+ move.l (%a0),%d0
+ jpl fp_e2e_small | zero / denorm?
+ | The high bit is set, so normalization is irrelevant.
+fp_e2e_checkround:
+ subq.l #4,%a0
+#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
+ move.b (%a0),%d0
+ jne fp_e2e_round
+#endif
+ printf PCONV,"%p(",1,%a0
+ printx PCONV,%a0@
+ printf PCONV,")\n"
+ moveq #1,%d0
+ rts
+#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
+fp_e2e_round:
+ fp_set_sr FPSR_EXC_INEX2
+ clr.b (%a0)
+ move.w (FPD_RND,FPDATA),%d2
+ jne fp_e2e_roundother | %d2 == 0, round to nearest
+ tst.b %d0 | test guard bit
+ jpl 9f | zero is closer
+ btst #0,(11,%a0) | test lsb bit
+ jne fp_e2e_doroundup | round to infinity
+ lsl.b #1,%d0 | check low bits
+ jeq 9f | round to zero
+fp_e2e_doroundup:
+ addq.l #1,(8,%a0)
+ jcc 9f
+ addq.l #1,(4,%a0)
+ jcc 9f
+ move.w #0x8000,(4,%a0)
+ addq.w #1,(2,%a0)
+9: printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+fp_e2e_roundother:
+ subq.w #2,%d2
+ jcs 9b | %d2 < 2, round to zero
+ jhi 1f | %d2 > 2, round to +infinity
+ tst.b (1,%a0) | to -inf
+ jne fp_e2e_doroundup | negative, round to infinity
+ jra 9b | positive, round to zero
+1: tst.b (1,%a0) | to +inf
+ jeq fp_e2e_doroundup | positive, round to infinity
+ jra 9b | negative, round to zero
+#endif
+ | zeros and subnormals:
+ | try to normalize these anyway.
+fp_e2e_small:
+ jne fp_e2e_small1 | high lword zero?
+ move.l (4,%a0),%d0
+ jne fp_e2e_small2
+#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
+ clr.l %d0
+ move.b (-4,%a0),%d0
+ jne fp_e2e_small3
+#endif
+ | Genuine zero.
+ clr.w -(%a0)
+ subq.l #2,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ moveq #1,%d0
+ rts
+ | definitely subnormal, need to shift all 64 bits
+fp_e2e_small1:
+ bfffo %d0{#0,#32},%d1
+ move.w -(%a0),%d2
+ sub.w %d1,%d2
+ jcc 1f
+ | Pathologically small, denormalize.
+ add.w %d2,%d1
+ clr.w %d2
+1: move.w %d2,(%a0)+
+ move.w %d1,%d2
+ jeq fp_e2e_checkround
+ | fancy 64-bit double-shift begins here
+ lsl.l %d2,%d0
+ move.l %d0,(%a0)+
+ move.l (%a0),%d0
+ move.l %d0,%d1
+ lsl.l %d2,%d0
+ move.l %d0,(%a0)
+ neg.w %d2
+ and.w #0x1f,%d2
+ lsr.l %d2,%d1
+ or.l %d1,-(%a0)
+#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
+fp_e2e_extra1:
+ clr.l %d0
+ move.b (-4,%a0),%d0
+ neg.w %d2
+ add.w #24,%d2
+ jcc 1f
+ clr.b (-4,%a0)
+ lsl.l %d2,%d0
+ or.l %d0,(4,%a0)
+ jra fp_e2e_checkround
+1: addq.w #8,%d2
+ lsl.l %d2,%d0
+ move.b %d0,(-4,%a0)
+ lsr.l #8,%d0
+ or.l %d0,(4,%a0)
+#endif
+ jra fp_e2e_checkround
+ | pathologically small subnormal
+fp_e2e_small2:
+ bfffo %d0{#0,#32},%d1
+ add.w #32,%d1
+ move.w -(%a0),%d2
+ sub.w %d1,%d2
+ jcc 1f
+ | Beyond pathologically small, denormalize.
+ add.w %d2,%d1
+ clr.w %d2
+1: move.w %d2,(%a0)+
+ ext.l %d1
+ jeq fp_e2e_checkround
+ clr.l (4,%a0)
+ sub.w #32,%d2
+ jcs 1f
+ lsl.l %d1,%d0 | lower lword needs only to be shifted
+ move.l %d0,(%a0) | into the higher lword
+#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
+ clr.l %d0
+ move.b (-4,%a0),%d0
+ clr.b (-4,%a0)
+ neg.w %d1
+ add.w #32,%d1
+ bfins %d0,(%a0){%d1,#8}
+#endif
+ jra fp_e2e_checkround
+1: neg.w %d1 | lower lword is splitted between
+ bfins %d0,(%a0){%d1,#32} | higher and lower lword
+#ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
+ jra fp_e2e_checkround
+#else
+ move.w %d1,%d2
+ jra fp_e2e_extra1
+ | These are extremely small numbers, that will mostly end up as zero
+ | anyway, so this is only important for correct rounding.
+fp_e2e_small3:
+ bfffo %d0{#24,#8},%d1
+ add.w #40,%d1
+ move.w -(%a0),%d2
+ sub.w %d1,%d2
+ jcc 1f
+ | Pathologically small, denormalize.
+ add.w %d2,%d1
+ clr.w %d2
+1: move.w %d2,(%a0)+
+ ext.l %d1
+ jeq fp_e2e_checkround
+ cmp.w #8,%d1
+ jcs 2f
+1: clr.b (-4,%a0)
+ sub.w #64,%d1
+ jcs 1f
+ add.w #24,%d1
+ lsl.l %d1,%d0
+ move.l %d0,(%a0)
+ jra fp_e2e_checkround
+1: neg.w %d1
+ bfins %d0,(%a0){%d1,#8}
+ jra fp_e2e_checkround
+2: lsl.l %d1,%d0
+ move.b %d0,(-4,%a0)
+ lsr.l #8,%d0
+ move.b %d0,(7,%a0)
+ jra fp_e2e_checkround
+#endif
+1: move.l %d0,%d1 | lower lword is splitted between
+ lsl.l %d2,%d0 | higher and lower lword
+ move.l %d0,(%a0)
+ move.l %d1,%d0
+ neg.w %d2
+ add.w #32,%d2
+ lsr.l %d2,%d0
+ move.l %d0,-(%a0)
+ jra fp_e2e_checkround
+ | Infinities and NaNs
+fp_e2e_large:
+ move.l (%a0)+,%d0
+ jne 3f
+1: tst.l (%a0)
+ jne 4f
+ moveq #1,%d0
+2: subq.l #8,%a0
+ printf PCONV,"%p(",1,%a0
+ printx PCONV,%a0@
+ printf PCONV,")\n"
+ rts
+ | we have maybe a NaN, shift off the highest bit
+3: lsl.l #1,%d0
+ jeq 1b
+ | we have a NaN, clear the return value
+4: clrl %d0
+ jra 2b
+
+
+/*
+ * Normalization functions. Call these on the output of general
+ * FP operators, and before any conversion into the destination
+ * formats. fp_normalize_ext has always to be called first, the
+ * following conversion functions expect an already normalized
+ * number.
+ */
+
+ | fp_normalize_ext:
+ | normalize an extended in extended (unpacked) format, basically
+ | it does the same as fp_conv_ext2ext, additionally it also does
+ | the necessary postprocessing checks.
+ | args: %a0 (struct fp_ext *)
+ | NOTE: it does _not_ modify %a0/%a1 and the upper word of %d2
+
+fp_normalize_ext:
+ printf PNORM,"ne: %p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,"), "
+ move.l (%a0)+,%d0
+ cmp.w #0x7fff,%d0 | Inf / NaN?
+ jeq fp_ne_large
+ move.l (%a0),%d0
+ jpl fp_ne_small | zero / denorm?
+ | The high bit is set, so normalization is irrelevant.
+fp_ne_checkround:
+ subq.l #4,%a0
+#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
+ move.b (%a0),%d0
+ jne fp_ne_round
+#endif
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
+fp_ne_round:
+ fp_set_sr FPSR_EXC_INEX2
+ clr.b (%a0)
+ move.w (FPD_RND,FPDATA),%d2
+ jne fp_ne_roundother | %d2 == 0, round to nearest
+ tst.b %d0 | test guard bit
+ jpl 9f | zero is closer
+ btst #0,(11,%a0) | test lsb bit
+ jne fp_ne_doroundup | round to infinity
+ lsl.b #1,%d0 | check low bits
+ jeq 9f | round to zero
+fp_ne_doroundup:
+ addq.l #1,(8,%a0)
+ jcc 9f
+ addq.l #1,(4,%a0)
+ jcc 9f
+ addq.w #1,(2,%a0)
+ move.w #0x8000,(4,%a0)
+9: printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+fp_ne_roundother:
+ subq.w #2,%d2
+ jcs 9b | %d2 < 2, round to zero
+ jhi 1f | %d2 > 2, round to +infinity
+ tst.b (1,%a0) | to -inf
+ jne fp_ne_doroundup | negative, round to infinity
+ jra 9b | positive, round to zero
+1: tst.b (1,%a0) | to +inf
+ jeq fp_ne_doroundup | positive, round to infinity
+ jra 9b | negative, round to zero
+#endif
+ | Zeros and subnormal numbers
+ | These are probably merely subnormal, rather than "denormalized"
+ | numbers, so we will try to make them normal again.
+fp_ne_small:
+ jne fp_ne_small1 | high lword zero?
+ move.l (4,%a0),%d0
+ jne fp_ne_small2
+#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
+ clr.l %d0
+ move.b (-4,%a0),%d0
+ jne fp_ne_small3
+#endif
+ | Genuine zero.
+ clr.w -(%a0)
+ subq.l #2,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+ | Subnormal.
+fp_ne_small1:
+ bfffo %d0{#0,#32},%d1
+ move.w -(%a0),%d2
+ sub.w %d1,%d2
+ jcc 1f
+ | Pathologically small, denormalize.
+ add.w %d2,%d1
+ clr.w %d2
+ fp_set_sr FPSR_EXC_UNFL
+1: move.w %d2,(%a0)+
+ move.w %d1,%d2
+ jeq fp_ne_checkround
+ | This is exactly the same 64-bit double shift as seen above.
+ lsl.l %d2,%d0
+ move.l %d0,(%a0)+
+ move.l (%a0),%d0
+ move.l %d0,%d1
+ lsl.l %d2,%d0
+ move.l %d0,(%a0)
+ neg.w %d2
+ and.w #0x1f,%d2
+ lsr.l %d2,%d1
+ or.l %d1,-(%a0)
+#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
+fp_ne_extra1:
+ clr.l %d0
+ move.b (-4,%a0),%d0
+ neg.w %d2
+ add.w #24,%d2
+ jcc 1f
+ clr.b (-4,%a0)
+ lsl.l %d2,%d0
+ or.l %d0,(4,%a0)
+ jra fp_ne_checkround
+1: addq.w #8,%d2
+ lsl.l %d2,%d0
+ move.b %d0,(-4,%a0)
+ lsr.l #8,%d0
+ or.l %d0,(4,%a0)
+#endif
+ jra fp_ne_checkround
+ | May or may not be subnormal, if so, only 32 bits to shift.
+fp_ne_small2:
+ bfffo %d0{#0,#32},%d1
+ add.w #32,%d1
+ move.w -(%a0),%d2
+ sub.w %d1,%d2
+ jcc 1f
+ | Beyond pathologically small, denormalize.
+ add.w %d2,%d1
+ clr.w %d2
+ fp_set_sr FPSR_EXC_UNFL
+1: move.w %d2,(%a0)+
+ ext.l %d1
+ jeq fp_ne_checkround
+ clr.l (4,%a0)
+ sub.w #32,%d1
+ jcs 1f
+ lsl.l %d1,%d0 | lower lword needs only to be shifted
+ move.l %d0,(%a0) | into the higher lword
+#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
+ clr.l %d0
+ move.b (-4,%a0),%d0
+ clr.b (-4,%a0)
+ neg.w %d1
+ add.w #32,%d1
+ bfins %d0,(%a0){%d1,#8}
+#endif
+ jra fp_ne_checkround
+1: neg.w %d1 | lower lword is splitted between
+ bfins %d0,(%a0){%d1,#32} | higher and lower lword
+#ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
+ jra fp_ne_checkround
+#else
+ move.w %d1,%d2
+ jra fp_ne_extra1
+ | These are extremely small numbers, that will mostly end up as zero
+ | anyway, so this is only important for correct rounding.
+fp_ne_small3:
+ bfffo %d0{#24,#8},%d1
+ add.w #40,%d1
+ move.w -(%a0),%d2
+ sub.w %d1,%d2
+ jcc 1f
+ | Pathologically small, denormalize.
+ add.w %d2,%d1
+ clr.w %d2
+1: move.w %d2,(%a0)+
+ ext.l %d1
+ jeq fp_ne_checkround
+ cmp.w #8,%d1
+ jcs 2f
+1: clr.b (-4,%a0)
+ sub.w #64,%d1
+ jcs 1f
+ add.w #24,%d1
+ lsl.l %d1,%d0
+ move.l %d0,(%a0)
+ jra fp_ne_checkround
+1: neg.w %d1
+ bfins %d0,(%a0){%d1,#8}
+ jra fp_ne_checkround
+2: lsl.l %d1,%d0
+ move.b %d0,(-4,%a0)
+ lsr.l #8,%d0
+ move.b %d0,(7,%a0)
+ jra fp_ne_checkround
+#endif
+ | Infinities and NaNs, again, same as above.
+fp_ne_large:
+ move.l (%a0)+,%d0
+ jne 3f
+1: tst.l (%a0)
+ jne 4f
+2: subq.l #8,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+ | we have maybe a NaN, shift off the highest bit
+3: move.l %d0,%d1
+ lsl.l #1,%d1
+ jne 4f
+ clr.l (-4,%a0)
+ jra 1b
+ | we have a NaN, test if it is signaling
+4: bset #30,%d0
+ jne 2b
+ fp_set_sr FPSR_EXC_SNAN
+ move.l %d0,(-4,%a0)
+ jra 2b
+
+ | these next two do rounding as per the IEEE standard.
+ | values for the rounding modes appear to be:
+ | 0: Round to nearest
+ | 1: Round to zero
+ | 2: Round to -Infinity
+ | 3: Round to +Infinity
+ | both functions expect that fp_normalize was already
+ | called (and extended argument is already normalized
+ | as far as possible), these are used if there is different
+ | rounding precision is selected and before converting
+ | into single/double
+
+ | fp_normalize_double:
+ | normalize an extended with double (52-bit) precision
+ | args: %a0 (struct fp_ext *)
+
+fp_normalize_double:
+ printf PNORM,"nd: %p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,"), "
+ move.l (%a0)+,%d2
+ tst.w %d2
+ jeq fp_nd_zero | zero / denormalized
+ cmp.w #0x7fff,%d2
+ jeq fp_nd_huge | NaN / infinitive.
+ sub.w #0x4000-0x3ff,%d2 | will the exponent fit?
+ jcs fp_nd_small | too small.
+ cmp.w #0x7fe,%d2
+ jcc fp_nd_large | too big.
+ addq.l #4,%a0
+ move.l (%a0),%d0 | low lword of mantissa
+ | now, round off the low 11 bits.
+fp_nd_round:
+ moveq #21,%d1
+ lsl.l %d1,%d0 | keep 11 low bits.
+ jne fp_nd_checkround | Are they non-zero?
+ | nothing to do here
+9: subq.l #8,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+ | Be careful with the X bit! It contains the lsb
+ | from the shift above, it is needed for round to nearest.
+fp_nd_checkround:
+ fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
+ and.w #0xf800,(2,%a0) | clear bits 0-10
+ move.w (FPD_RND,FPDATA),%d2 | rounding mode
+ jne 2f | %d2 == 0, round to nearest
+ tst.l %d0 | test guard bit
+ jpl 9b | zero is closer
+ | here we test the X bit by adding it to %d2
+ clr.w %d2 | first set z bit, addx only clears it
+ addx.w %d2,%d2 | test lsb bit
+ | IEEE754-specified "round to even" behaviour. If the guard
+ | bit is set, then the number is odd, so rounding works like
+ | in grade-school arithmetic (i.e. 1.5 rounds to 2.0)
+ | Otherwise, an equal distance rounds towards zero, so as not
+ | to produce an odd number. This is strange, but it is what
+ | the standard says.
+ jne fp_nd_doroundup | round to infinity
+ lsl.l #1,%d0 | check low bits
+ jeq 9b | round to zero
+fp_nd_doroundup:
+ | round (the mantissa, that is) towards infinity
+ add.l #0x800,(%a0)
+ jcc 9b | no overflow, good.
+ addq.l #1,-(%a0) | extend to high lword
+ jcc 1f | no overflow, good.
+ | Yow! we have managed to overflow the mantissa. Since this
+ | only happens when %d1 was 0xfffff800, it is now zero, so
+ | reset the high bit, and increment the exponent.
+ move.w #0x8000,(%a0)
+ addq.w #1,-(%a0)
+ cmp.w #0x43ff,(%a0)+ | exponent now overflown?
+ jeq fp_nd_large | yes, so make it infinity.
+1: subq.l #4,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+2: subq.w #2,%d2
+ jcs 9b | %d2 < 2, round to zero
+ jhi 3f | %d2 > 2, round to +infinity
+ | Round to +Inf or -Inf. High word of %d2 contains the
+ | sign of the number, by the way.
+ swap %d2 | to -inf
+ tst.b %d2
+ jne fp_nd_doroundup | negative, round to infinity
+ jra 9b | positive, round to zero
+3: swap %d2 | to +inf
+ tst.b %d2
+ jeq fp_nd_doroundup | positive, round to infinity
+ jra 9b | negative, round to zero
+ | Exponent underflow. Try to make a denormal, and set it to
+ | the smallest possible fraction if this fails.
+fp_nd_small:
+ fp_set_sr FPSR_EXC_UNFL | set UNFL bit
+ move.w #0x3c01,(-2,%a0) | 2**-1022
+ neg.w %d2 | degree of underflow
+ cmp.w #32,%d2 | single or double shift?
+ jcc 1f
+ | Again, another 64-bit double shift.
+ move.l (%a0),%d0
+ move.l %d0,%d1
+ lsr.l %d2,%d0
+ move.l %d0,(%a0)+
+ move.l (%a0),%d0
+ lsr.l %d2,%d0
+ neg.w %d2
+ add.w #32,%d2
+ lsl.l %d2,%d1
+ or.l %d1,%d0
+ move.l (%a0),%d1
+ move.l %d0,(%a0)
+ | Check to see if we shifted off any significant bits
+ lsl.l %d2,%d1
+ jeq fp_nd_round | Nope, round.
+ bset #0,%d0 | Yes, so set the "sticky bit".
+ jra fp_nd_round | Now, round.
+ | Another 64-bit single shift and store
+1: sub.w #32,%d2
+ cmp.w #32,%d2 | Do we really need to shift?
+ jcc 2f | No, the number is too small.
+ move.l (%a0),%d0
+ clr.l (%a0)+
+ move.l %d0,%d1
+ lsr.l %d2,%d0
+ neg.w %d2
+ add.w #32,%d2
+ | Again, check to see if we shifted off any significant bits.
+ tst.l (%a0)
+ jeq 1f
+ bset #0,%d0 | Sticky bit.
+1: move.l %d0,(%a0)
+ lsl.l %d2,%d1
+ jeq fp_nd_round
+ bset #0,%d0
+ jra fp_nd_round
+ | Sorry, the number is just too small.
+2: clr.l (%a0)+
+ clr.l (%a0)
+ moveq #1,%d0 | Smallest possible fraction,
+ jra fp_nd_round | round as desired.
+ | zero and denormalized
+fp_nd_zero:
+ tst.l (%a0)+
+ jne 1f
+ tst.l (%a0)
+ jne 1f
+ subq.l #8,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts | zero. nothing to do.
+ | These are not merely subnormal numbers, but true denormals,
+ | i.e. pathologically small (exponent is 2**-16383) numbers.
+ | It is clearly impossible for even a normal extended number
+ | with that exponent to fit into double precision, so just
+ | write these ones off as "too darn small".
+1: fp_set_sr FPSR_EXC_UNFL | Set UNFL bit
+ clr.l (%a0)
+ clr.l -(%a0)
+ move.w #0x3c01,-(%a0) | i.e. 2**-1022
+ addq.l #6,%a0
+ moveq #1,%d0
+ jra fp_nd_round | round.
+ | Exponent overflow. Just call it infinity.
+fp_nd_large:
+ move.w #0x7ff,%d0
+ and.w (6,%a0),%d0
+ jeq 1f
+ fp_set_sr FPSR_EXC_INEX2
+1: fp_set_sr FPSR_EXC_OVFL
+ move.w (FPD_RND,FPDATA),%d2
+ jne 3f | %d2 = 0 round to nearest
+1: move.w #0x7fff,(-2,%a0)
+ clr.l (%a0)+
+ clr.l (%a0)
+2: subq.l #8,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+3: subq.w #2,%d2
+ jcs 5f | %d2 < 2, round to zero
+ jhi 4f | %d2 > 2, round to +infinity
+ tst.b (-3,%a0) | to -inf
+ jne 1b
+ jra 5f
+4: tst.b (-3,%a0) | to +inf
+ jeq 1b
+5: move.w #0x43fe,(-2,%a0)
+ moveq #-1,%d0
+ move.l %d0,(%a0)+
+ move.w #0xf800,%d0
+ move.l %d0,(%a0)
+ jra 2b
+ | Infinities or NaNs
+fp_nd_huge:
+ subq.l #4,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+
+ | fp_normalize_single:
+ | normalize an extended with single (23-bit) precision
+ | args: %a0 (struct fp_ext *)
+
+fp_normalize_single:
+ printf PNORM,"ns: %p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,") "
+ addq.l #2,%a0
+ move.w (%a0)+,%d2
+ jeq fp_ns_zero | zero / denormalized
+ cmp.w #0x7fff,%d2
+ jeq fp_ns_huge | NaN / infinitive.
+ sub.w #0x4000-0x7f,%d2 | will the exponent fit?
+ jcs fp_ns_small | too small.
+ cmp.w #0xfe,%d2
+ jcc fp_ns_large | too big.
+ move.l (%a0)+,%d0 | get high lword of mantissa
+fp_ns_round:
+ tst.l (%a0) | check the low lword
+ jeq 1f
+ | Set a sticky bit if it is non-zero. This should only
+ | affect the rounding in what would otherwise be equal-
+ | distance situations, which is what we want it to do.
+ bset #0,%d0
+1: clr.l (%a0) | zap it from memory.
+ | now, round off the low 8 bits of the hi lword.
+ tst.b %d0 | 8 low bits.
+ jne fp_ns_checkround | Are they non-zero?
+ | nothing to do here
+ subq.l #8,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+fp_ns_checkround:
+ fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
+ clr.b -(%a0) | clear low byte of high lword
+ subq.l #3,%a0
+ move.w (FPD_RND,FPDATA),%d2 | rounding mode
+ jne 2f | %d2 == 0, round to nearest
+ tst.b %d0 | test guard bit
+ jpl 9f | zero is closer
+ btst #8,%d0 | test lsb bit
+ | round to even behaviour, see above.
+ jne fp_ns_doroundup | round to infinity
+ lsl.b #1,%d0 | check low bits
+ jeq 9f | round to zero
+fp_ns_doroundup:
+ | round (the mantissa, that is) towards infinity
+ add.l #0x100,(%a0)
+ jcc 9f | no overflow, good.
+ | Overflow. This means that the %d1 was 0xffffff00, so it
+ | is now zero. We will set the mantissa to reflect this, and
+ | increment the exponent (checking for overflow there too)
+ move.w #0x8000,(%a0)
+ addq.w #1,-(%a0)
+ cmp.w #0x407f,(%a0)+ | exponent now overflown?
+ jeq fp_ns_large | yes, so make it infinity.
+9: subq.l #4,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+ | check nondefault rounding modes
+2: subq.w #2,%d2
+ jcs 9b | %d2 < 2, round to zero
+ jhi 3f | %d2 > 2, round to +infinity
+ tst.b (-3,%a0) | to -inf
+ jne fp_ns_doroundup | negative, round to infinity
+ jra 9b | positive, round to zero
+3: tst.b (-3,%a0) | to +inf
+ jeq fp_ns_doroundup | positive, round to infinity
+ jra 9b | negative, round to zero
+ | Exponent underflow. Try to make a denormal, and set it to
+ | the smallest possible fraction if this fails.
+fp_ns_small:
+ fp_set_sr FPSR_EXC_UNFL | set UNFL bit
+ move.w #0x3f81,(-2,%a0) | 2**-126
+ neg.w %d2 | degree of underflow
+ cmp.w #32,%d2 | single or double shift?
+ jcc 2f
+ | a 32-bit shift.
+ move.l (%a0),%d0
+ move.l %d0,%d1
+ lsr.l %d2,%d0
+ move.l %d0,(%a0)+
+ | Check to see if we shifted off any significant bits.
+ neg.w %d2
+ add.w #32,%d2
+ lsl.l %d2,%d1
+ jeq 1f
+ bset #0,%d0 | Sticky bit.
+ | Check the lower lword
+1: tst.l (%a0)
+ jeq fp_ns_round
+ clr (%a0)
+ bset #0,%d0 | Sticky bit.
+ jra fp_ns_round
+ | Sorry, the number is just too small.
+2: clr.l (%a0)+
+ clr.l (%a0)
+ moveq #1,%d0 | Smallest possible fraction,
+ jra fp_ns_round | round as desired.
+ | Exponent overflow. Just call it infinity.
+fp_ns_large:
+ tst.b (3,%a0)
+ jeq 1f
+ fp_set_sr FPSR_EXC_INEX2
+1: fp_set_sr FPSR_EXC_OVFL
+ move.w (FPD_RND,FPDATA),%d2
+ jne 3f | %d2 = 0 round to nearest
+1: move.w #0x7fff,(-2,%a0)
+ clr.l (%a0)+
+ clr.l (%a0)
+2: subq.l #8,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+3: subq.w #2,%d2
+ jcs 5f | %d2 < 2, round to zero
+ jhi 4f | %d2 > 2, round to +infinity
+ tst.b (-3,%a0) | to -inf
+ jne 1b
+ jra 5f
+4: tst.b (-3,%a0) | to +inf
+ jeq 1b
+5: move.w #0x407e,(-2,%a0)
+ move.l #0xffffff00,(%a0)+
+ clr.l (%a0)
+ jra 2b
+ | zero and denormalized
+fp_ns_zero:
+ tst.l (%a0)+
+ jne 1f
+ tst.l (%a0)
+ jne 1f
+ subq.l #8,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts | zero. nothing to do.
+ | These are not merely subnormal numbers, but true denormals,
+ | i.e. pathologically small (exponent is 2**-16383) numbers.
+ | It is clearly impossible for even a normal extended number
+ | with that exponent to fit into single precision, so just
+ | write these ones off as "too darn small".
+1: fp_set_sr FPSR_EXC_UNFL | Set UNFL bit
+ clr.l (%a0)
+ clr.l -(%a0)
+ move.w #0x3f81,-(%a0) | i.e. 2**-126
+ addq.l #6,%a0
+ moveq #1,%d0
+ jra fp_ns_round | round.
+ | Infinities or NaNs
+fp_ns_huge:
+ subq.l #4,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+
+ | fp_normalize_single_fast:
+ | normalize an extended with single (23-bit) precision
+ | this is only used by fsgldiv/fsgdlmul, where the
+ | operand is not completly normalized.
+ | args: %a0 (struct fp_ext *)
+
+fp_normalize_single_fast:
+ printf PNORM,"nsf: %p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,") "
+ addq.l #2,%a0
+ move.w (%a0)+,%d2
+ cmp.w #0x7fff,%d2
+ jeq fp_nsf_huge | NaN / infinitive.
+ move.l (%a0)+,%d0 | get high lword of mantissa
+fp_nsf_round:
+ tst.l (%a0) | check the low lword
+ jeq 1f
+ | Set a sticky bit if it is non-zero. This should only
+ | affect the rounding in what would otherwise be equal-
+ | distance situations, which is what we want it to do.
+ bset #0,%d0
+1: clr.l (%a0) | zap it from memory.
+ | now, round off the low 8 bits of the hi lword.
+ tst.b %d0 | 8 low bits.
+ jne fp_nsf_checkround | Are they non-zero?
+ | nothing to do here
+ subq.l #8,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+fp_nsf_checkround:
+ fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
+ clr.b -(%a0) | clear low byte of high lword
+ subq.l #3,%a0
+ move.w (FPD_RND,FPDATA),%d2 | rounding mode
+ jne 2f | %d2 == 0, round to nearest
+ tst.b %d0 | test guard bit
+ jpl 9f | zero is closer
+ btst #8,%d0 | test lsb bit
+ | round to even behaviour, see above.
+ jne fp_nsf_doroundup | round to infinity
+ lsl.b #1,%d0 | check low bits
+ jeq 9f | round to zero
+fp_nsf_doroundup:
+ | round (the mantissa, that is) towards infinity
+ add.l #0x100,(%a0)
+ jcc 9f | no overflow, good.
+ | Overflow. This means that the %d1 was 0xffffff00, so it
+ | is now zero. We will set the mantissa to reflect this, and
+ | increment the exponent (checking for overflow there too)
+ move.w #0x8000,(%a0)
+ addq.w #1,-(%a0)
+ cmp.w #0x407f,(%a0)+ | exponent now overflown?
+ jeq fp_nsf_large | yes, so make it infinity.
+9: subq.l #4,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+ | check nondefault rounding modes
+2: subq.w #2,%d2
+ jcs 9b | %d2 < 2, round to zero
+ jhi 3f | %d2 > 2, round to +infinity
+ tst.b (-3,%a0) | to -inf
+ jne fp_nsf_doroundup | negative, round to infinity
+ jra 9b | positive, round to zero
+3: tst.b (-3,%a0) | to +inf
+ jeq fp_nsf_doroundup | positive, round to infinity
+ jra 9b | negative, round to zero
+ | Exponent overflow. Just call it infinity.
+fp_nsf_large:
+ tst.b (3,%a0)
+ jeq 1f
+ fp_set_sr FPSR_EXC_INEX2
+1: fp_set_sr FPSR_EXC_OVFL
+ move.w (FPD_RND,FPDATA),%d2
+ jne 3f | %d2 = 0 round to nearest
+1: move.w #0x7fff,(-2,%a0)
+ clr.l (%a0)+
+ clr.l (%a0)
+2: subq.l #8,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+3: subq.w #2,%d2
+ jcs 5f | %d2 < 2, round to zero
+ jhi 4f | %d2 > 2, round to +infinity
+ tst.b (-3,%a0) | to -inf
+ jne 1b
+ jra 5f
+4: tst.b (-3,%a0) | to +inf
+ jeq 1b
+5: move.w #0x407e,(-2,%a0)
+ move.l #0xffffff00,(%a0)+
+ clr.l (%a0)
+ jra 2b
+ | Infinities or NaNs
+fp_nsf_huge:
+ subq.l #4,%a0
+ printf PNORM,"%p(",1,%a0
+ printx PNORM,%a0@
+ printf PNORM,")\n"
+ rts
+
+ | conv_ext2int (macro):
+ | Generates a subroutine that converts an extended value to an
+ | integer of a given size, again, with the appropriate type of
+ | rounding.
+
+ | Macro arguments:
+ | s: size, as given in an assembly instruction.
+ | b: number of bits in that size.
+
+ | Subroutine arguments:
+ | %a0: source (struct fp_ext *)
+
+ | Returns the integer in %d0 (like it should)
+
+.macro conv_ext2int s,b
+ .set inf,(1<<(\b-1))-1 | i.e. MAXINT
+ printf PCONV,"e2i%d: %p(",2,#\b,%a0
+ printx PCONV,%a0@
+ printf PCONV,") "
+ addq.l #2,%a0
+ move.w (%a0)+,%d2 | exponent
+ jeq fp_e2i_zero\b | zero / denorm (== 0, here)
+ cmp.w #0x7fff,%d2
+ jeq fp_e2i_huge\b | Inf / NaN
+ sub.w #0x3ffe,%d2
+ jcs fp_e2i_small\b
+ cmp.w #\b,%d2
+ jhi fp_e2i_large\b
+ move.l (%a0),%d0
+ move.l %d0,%d1
+ lsl.l %d2,%d1
+ jne fp_e2i_round\b
+ tst.l (4,%a0)
+ jne fp_e2i_round\b
+ neg.w %d2
+ add.w #32,%d2
+ lsr.l %d2,%d0
+9: tst.w (-4,%a0)
+ jne 1f
+ tst.\s %d0
+ jmi fp_e2i_large\b
+ printf PCONV,"-> %p\n",1,%d0
+ rts
+1: neg.\s %d0
+ jeq 1f
+ jpl fp_e2i_large\b
+1: printf PCONV,"-> %p\n",1,%d0
+ rts
+fp_e2i_round\b:
+ fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
+ neg.w %d2
+ add.w #32,%d2
+ .if \b>16
+ jeq 5f
+ .endif
+ lsr.l %d2,%d0
+ move.w (FPD_RND,FPDATA),%d2 | rounding mode
+ jne 2f | %d2 == 0, round to nearest
+ tst.l %d1 | test guard bit
+ jpl 9b | zero is closer
+ btst %d2,%d0 | test lsb bit (%d2 still 0)
+ jne fp_e2i_doroundup\b
+ lsl.l #1,%d1 | check low bits
+ jne fp_e2i_doroundup\b
+ tst.l (4,%a0)
+ jeq 9b
+fp_e2i_doroundup\b:
+ addq.l #1,%d0
+ jra 9b
+ | check nondefault rounding modes
+2: subq.w #2,%d2
+ jcs 9b | %d2 < 2, round to zero
+ jhi 3f | %d2 > 2, round to +infinity
+ tst.w (-4,%a0) | to -inf
+ jne fp_e2i_doroundup\b | negative, round to infinity
+ jra 9b | positive, round to zero
+3: tst.w (-4,%a0) | to +inf
+ jeq fp_e2i_doroundup\b | positive, round to infinity
+ jra 9b | negative, round to zero
+ | we are only want -2**127 get correctly rounded here,
+ | since the guard bit is in the lower lword.
+ | everything else ends up anyway as overflow.
+ .if \b>16
+5: move.w (FPD_RND,FPDATA),%d2 | rounding mode
+ jne 2b | %d2 == 0, round to nearest
+ move.l (4,%a0),%d1 | test guard bit
+ jpl 9b | zero is closer
+ lsl.l #1,%d1 | check low bits
+ jne fp_e2i_doroundup\b
+ jra 9b
+ .endif
+fp_e2i_zero\b:
+ clr.l %d0
+ tst.l (%a0)+
+ jne 1f
+ tst.l (%a0)
+ jeq 3f
+1: subq.l #4,%a0
+ fp_clr_sr FPSR_EXC_UNFL | fp_normalize_ext has set this bit
+fp_e2i_small\b:
+ fp_set_sr FPSR_EXC_INEX2
+ clr.l %d0
+ move.w (FPD_RND,FPDATA),%d2 | rounding mode
+ subq.w #2,%d2
+ jcs 3f | %d2 < 2, round to nearest/zero
+ jhi 2f | %d2 > 2, round to +infinity
+ tst.w (-4,%a0) | to -inf
+ jeq 3f
+ subq.\s #1,%d0
+ jra 3f
+2: tst.w (-4,%a0) | to +inf
+ jne 3f
+ addq.\s #1,%d0
+3: printf PCONV,"-> %p\n",1,%d0
+ rts
+fp_e2i_large\b:
+ fp_set_sr FPSR_EXC_OPERR
+ move.\s #inf,%d0
+ tst.w (-4,%a0)
+ jeq 1f
+ addq.\s #1,%d0
+1: printf PCONV,"-> %p\n",1,%d0
+ rts
+fp_e2i_huge\b:
+ move.\s (%a0),%d0
+ tst.l (%a0)
+ jne 1f
+ tst.l (%a0)
+ jeq fp_e2i_large\b
+ | fp_normalize_ext has set this bit already
+ | and made the number nonsignaling
+1: fp_tst_sr FPSR_EXC_SNAN
+ jne 1f
+ fp_set_sr FPSR_EXC_OPERR
+1: printf PCONV,"-> %p\n",1,%d0
+ rts
+.endm
+
+fp_conv_ext2long:
+ conv_ext2int l,32
+
+fp_conv_ext2short:
+ conv_ext2int w,16
+
+fp_conv_ext2byte:
+ conv_ext2int b,8
+
+fp_conv_ext2double:
+ jsr fp_normalize_double
+ printf PCONV,"e2d: %p(",1,%a0
+ printx PCONV,%a0@
+ printf PCONV,"), "
+ move.l (%a0)+,%d2
+ cmp.w #0x7fff,%d2
+ jne 1f
+ move.w #0x7ff,%d2
+ move.l (%a0)+,%d0
+ jra 2f
+1: sub.w #0x3fff-0x3ff,%d2
+ move.l (%a0)+,%d0
+ jmi 2f
+ clr.w %d2
+2: lsl.w #5,%d2
+ lsl.l #7,%d2
+ lsl.l #8,%d2
+ move.l %d0,%d1
+ lsl.l #1,%d0
+ lsr.l #4,%d0
+ lsr.l #8,%d0
+ or.l %d2,%d0
+ putuser.l %d0,(%a1)+,fp_err_ua2,%a1
+ moveq #21,%d0
+ lsl.l %d0,%d1
+ move.l (%a0),%d0
+ lsr.l #4,%d0
+ lsr.l #7,%d0
+ or.l %d1,%d0
+ putuser.l %d0,(%a1),fp_err_ua2,%a1
+#ifdef FPU_EMU_DEBUG
+ getuser.l %a1@(-4),%d0,fp_err_ua2,%a1
+ getuser.l %a1@(0),%d1,fp_err_ua2,%a1
+ printf PCONV,"%p(%08x%08x)\n",3,%a1,%d0,%d1
+#endif
+ rts
+
+fp_conv_ext2single:
+ jsr fp_normalize_single
+ printf PCONV,"e2s: %p(",1,%a0
+ printx PCONV,%a0@
+ printf PCONV,"), "
+ move.l (%a0)+,%d1
+ cmp.w #0x7fff,%d1
+ jne 1f
+ move.w #0xff,%d1
+ move.l (%a0)+,%d0
+ jra 2f
+1: sub.w #0x3fff-0x7f,%d1
+ move.l (%a0)+,%d0
+ jmi 2f
+ clr.w %d1
+2: lsl.w #8,%d1
+ lsl.l #7,%d1
+ lsl.l #8,%d1
+ bclr #31,%d0
+ lsr.l #8,%d0
+ or.l %d1,%d0
+ printf PCONV,"%08x\n",1,%d0
+ rts
+
+ | special return addresses for instr that
+ | encode the rounding precision in the opcode
+ | (e.g. fsmove,fdmove)
+
+fp_finalrounding_single:
+ addq.l #8,%sp
+ jsr fp_normalize_ext
+ jsr fp_normalize_single
+ jra fp_finaltest
+
+fp_finalrounding_single_fast:
+ addq.l #8,%sp
+ jsr fp_normalize_ext
+ jsr fp_normalize_single_fast
+ jra fp_finaltest
+
+fp_finalrounding_double:
+ addq.l #8,%sp
+ jsr fp_normalize_ext
+ jsr fp_normalize_double
+ jra fp_finaltest
+
+ | fp_finaltest:
+ | set the emulated status register based on the outcome of an
+ | emulated instruction.
+
+fp_finalrounding:
+ addq.l #8,%sp
+| printf ,"f: %p\n",1,%a0
+ jsr fp_normalize_ext
+ move.w (FPD_PREC,FPDATA),%d0
+ subq.w #1,%d0
+ jcs fp_finaltest
+ jne 1f
+ jsr fp_normalize_single
+ jra 2f
+1: jsr fp_normalize_double
+2:| printf ,"f: %p\n",1,%a0
+fp_finaltest:
+ | First, we do some of the obvious tests for the exception
+ | status byte and condition code bytes of fp_sr here, so that
+ | they do not have to be handled individually by every
+ | emulated instruction.
+ clr.l %d0
+ addq.l #1,%a0
+ tst.b (%a0)+ | sign
+ jeq 1f
+ bset #FPSR_CC_NEG-24,%d0 | N bit
+1: cmp.w #0x7fff,(%a0)+ | exponent
+ jeq 2f
+ | test for zero
+ moveq #FPSR_CC_Z-24,%d1
+ tst.l (%a0)+
+ jne 9f
+ tst.l (%a0)
+ jne 9f
+ jra 8f
+ | infinitiv and NAN
+2: moveq #FPSR_CC_NAN-24,%d1
+ move.l (%a0)+,%d2
+ lsl.l #1,%d2 | ignore high bit
+ jne 8f
+ tst.l (%a0)
+ jne 8f
+ moveq #FPSR_CC_INF-24,%d1
+8: bset %d1,%d0
+9: move.b %d0,(FPD_FPSR+0,FPDATA) | set condition test result
+ | move instructions enter here
+ | Here, we test things in the exception status byte, and set
+ | other things in the accrued exception byte accordingly.
+ | Emulated instructions can set various things in the former,
+ | as defined in fp_emu.h.
+fp_final:
+ move.l (FPD_FPSR,FPDATA),%d0
+#if 0
+ btst #FPSR_EXC_SNAN,%d0 | EXC_SNAN
+ jne 1f
+ btst #FPSR_EXC_OPERR,%d0 | EXC_OPERR
+ jeq 2f
+1: bset #FPSR_AEXC_IOP,%d0 | set IOP bit
+2: btst #FPSR_EXC_OVFL,%d0 | EXC_OVFL
+ jeq 1f
+ bset #FPSR_AEXC_OVFL,%d0 | set OVFL bit
+1: btst #FPSR_EXC_UNFL,%d0 | EXC_UNFL
+ jeq 1f
+ btst #FPSR_EXC_INEX2,%d0 | EXC_INEX2
+ jeq 1f
+ bset #FPSR_AEXC_UNFL,%d0 | set UNFL bit
+1: btst #FPSR_EXC_DZ,%d0 | EXC_INEX1
+ jeq 1f
+ bset #FPSR_AEXC_DZ,%d0 | set DZ bit
+1: btst #FPSR_EXC_OVFL,%d0 | EXC_OVFL
+ jne 1f
+ btst #FPSR_EXC_INEX2,%d0 | EXC_INEX2
+ jne 1f
+ btst #FPSR_EXC_INEX1,%d0 | EXC_INEX1
+ jeq 2f
+1: bset #FPSR_AEXC_INEX,%d0 | set INEX bit
+2: move.l %d0,(FPD_FPSR,FPDATA)
+#else
+ | same as above, greatly optimized, but untested (yet)
+ move.l %d0,%d2
+ lsr.l #5,%d0
+ move.l %d0,%d1
+ lsr.l #4,%d1
+ or.l %d0,%d1
+ and.b #0x08,%d1
+ move.l %d2,%d0
+ lsr.l #6,%d0
+ or.l %d1,%d0
+ move.l %d2,%d1
+ lsr.l #4,%d1
+ or.b #0xdf,%d1
+ and.b %d1,%d0
+ move.l %d2,%d1
+ lsr.l #7,%d1
+ and.b #0x80,%d1
+ or.b %d1,%d0
+ and.b #0xf8,%d0
+ or.b %d0,%d2
+ move.l %d2,(FPD_FPSR,FPDATA)
+#endif
+ move.b (FPD_FPSR+2,FPDATA),%d0
+ and.b (FPD_FPCR+2,FPDATA),%d0
+ jeq 1f
+ printf ,"send signal!!!\n"
+1: jra fp_end