summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/configfs-acpi36
-rw-r--r--Documentation/acpi/aml-debugger.txt66
-rw-r--r--Documentation/acpi/linuxized-acpica.txt262
-rw-r--r--Documentation/acpi/ssdt-overlays.txt172
-rw-r--r--Documentation/kernel-parameters.txt10
5 files changed, 546 insertions, 0 deletions
diff --git a/Documentation/ABI/testing/configfs-acpi b/Documentation/ABI/testing/configfs-acpi
new file mode 100644
index 000000000000..4ab4e99aa863
--- /dev/null
+++ b/Documentation/ABI/testing/configfs-acpi
@@ -0,0 +1,36 @@
+What: /config/acpi
+Date: July 2016
+KernelVersion: 4.8
+Contact: linux-acpi@vger.kernel.org
+Description:
+ This represents the ACPI subsystem entry point directory. It
+ contains sub-groups corresponding to ACPI configurable options.
+
+What: /config/acpi/table
+Date: July 2016
+KernelVersion: 4.8
+Description:
+
+ This group contains the configuration for user defined ACPI
+ tables. The attributes of a user define table are:
+
+ aml - a binary attribute that the user can use to
+ fill in the ACPI aml definitions. Once the aml
+ data is written to this file and the file is
+ closed the table will be loaded and ACPI devices
+ will be enumerated. To check if the operation is
+ successful the user must check the error code
+ for close(). If the operation is successful,
+ subsequent writes to this attribute will fail.
+
+ The rest of the attributes are read-only and are valid only
+ after the table has been loaded by filling the aml entry:
+
+ signature - ASCII table signature
+ length - length of table in bytes, including the header
+ revision - ACPI Specification minor version number
+ oem_id - ASCII OEM identification
+ oem_table_id - ASCII OEM table identification
+ oem_revision - OEM revision number
+ asl_compiler_id - ASCII ASL compiler vendor ID
+ asl_compiler_revision - ASL compiler version
diff --git a/Documentation/acpi/aml-debugger.txt b/Documentation/acpi/aml-debugger.txt
new file mode 100644
index 000000000000..5f62aa4a493b
--- /dev/null
+++ b/Documentation/acpi/aml-debugger.txt
@@ -0,0 +1,66 @@
+The AML Debugger
+
+Copyright (C) 2016, Intel Corporation
+Author: Lv Zheng <lv.zheng@intel.com>
+
+
+This document describes the usage of the AML debugger embedded in the Linux
+kernel.
+
+1. Build the debugger
+
+ The following kernel configuration items are required to enable the AML
+ debugger interface from the Linux kernel:
+
+ CONFIG_ACPI_DEBUGGER=y
+ CONFIG_ACPI_DEBUGGER_USER=m
+
+ The userspace utlities can be built from the kernel source tree using
+ the following commands:
+
+ $ cd tools
+ $ make acpi
+
+ The resultant userspace tool binary is then located at:
+
+ tools/acpi/power/acpi/acpidbg/acpidbg
+
+ It can be installed to system directories by running "make install" (as a
+ sufficiently privileged user).
+
+2. Start the userspace debugger interface
+
+ After booting the kernel with the debugger built-in, the debugger can be
+ started by using the following commands:
+
+ # mount -t debugfs none /sys/kernel/debug
+ # modprobe acpi_dbg
+ # tools/acpi/power/acpi/acpidbg/acpidbg
+
+ That spawns the interactive AML debugger environment where you can execute
+ debugger commands.
+
+ The commands are documented in the "ACPICA Overview and Programmer Reference"
+ that can be downloaded from
+
+ https://acpica.org/documentation
+
+ The detailed debugger commands reference is located in Chapter 12 "ACPICA
+ Debugger Reference". The "help" command can be used for a quick reference.
+
+3. Stop the userspace debugger interface
+
+ The interactive debugger interface can be closed by pressing Ctrl+C or using
+ the "quit" or "exit" commands. When finished, unload the module with:
+
+ # rmmod acpi_dbg
+
+ The module unloading may fail if there is an acpidbg instance running.
+
+4. Run the debugger in a script
+
+ It may be useful to run the AML debugger in a test script. "acpidbg" supports
+ this in a special "batch" mode. For example, the following command outputs
+ the entire ACPI namespace:
+
+ # acpidbg -b "namespace"
diff --git a/Documentation/acpi/linuxized-acpica.txt b/Documentation/acpi/linuxized-acpica.txt
new file mode 100644
index 000000000000..defe2eec5331
--- /dev/null
+++ b/Documentation/acpi/linuxized-acpica.txt
@@ -0,0 +1,262 @@
+Linuxized ACPICA - Introduction to ACPICA Release Automation
+
+Copyright (C) 2013-2016, Intel Corporation
+Author: Lv Zheng <lv.zheng@intel.com>
+
+
+Abstract:
+
+This document describes the ACPICA project and the relationship between
+ACPICA and Linux. It also describes how ACPICA code in drivers/acpi/acpica,
+include/acpi and tools/power/acpi is automatically updated to follow the
+upstream.
+
+
+1. ACPICA Project
+
+ The ACPI Component Architecture (ACPICA) project provides an operating
+ system (OS)-independent reference implementation of the Advanced
+ Configuration and Power Interface Specification (ACPI). It has been
+ adapted by various host OSes. By directly integrating ACPICA, Linux can
+ also benefit from the application experiences of ACPICA from other host
+ OSes.
+
+ The homepage of ACPICA project is: www.acpica.org, it is maintained and
+ supported by Intel Corporation.
+
+ The following figure depicts the Linux ACPI subystem where the ACPICA
+ adaptation is included:
+
+ +---------------------------------------------------------+
+ | |
+ | +---------------------------------------------------+ |
+ | | +------------------+ | |
+ | | | Table Management | | |
+ | | +------------------+ | |
+ | | +----------------------+ | |
+ | | | Namespace Management | | |
+ | | +----------------------+ | |
+ | | +------------------+ ACPICA Components | |
+ | | | Event Management | | |
+ | | +------------------+ | |
+ | | +---------------------+ | |
+ | | | Resource Management | | |
+ | | +---------------------+ | |
+ | | +---------------------+ | |
+ | | | Hardware Management | | |
+ | | +---------------------+ | |
+ | +---------------------------------------------------+ | |
+ | | | +------------------+ | | |
+ | | | | OS Service Layer | | | |
+ | | | +------------------+ | | |
+ | | +-------------------------------------------------|-+ |
+ | | +--------------------+ | |
+ | | | Device Enumeration | | |
+ | | +--------------------+ | |
+ | | +------------------+ | |
+ | | | Power Management | | |
+ | | +------------------+ Linux/ACPI Components | |
+ | | +--------------------+ | |
+ | | | Thermal Management | | |
+ | | +--------------------+ | |
+ | | +--------------------------+ | |
+ | | | Drivers for ACPI Devices | | |
+ | | +--------------------------+ | |
+ | | +--------+ | |
+ | | | ...... | | |
+ | | +--------+ | |
+ | +---------------------------------------------------+ |
+ | |
+ +---------------------------------------------------------+
+
+ Figure 1. Linux ACPI Software Components
+
+ NOTE:
+ A. OS Service Layer - Provided by Linux to offer OS dependent
+ implementation of the predefined ACPICA interfaces (acpi_os_*).
+ include/acpi/acpiosxf.h
+ drivers/acpi/osl.c
+ include/acpi/platform
+ include/asm/acenv.h
+ B. ACPICA Functionality - Released from ACPICA code base to offer
+ OS independent implementation of the ACPICA interfaces (acpi_*).
+ drivers/acpi/acpica
+ include/acpi/ac*.h
+ tools/power/acpi
+ C. Linux/ACPI Functionality - Providing Linux specific ACPI
+ functionality to the other Linux kernel subsystems and user space
+ programs.
+ drivers/acpi
+ include/linux/acpi.h
+ include/linux/acpi*.h
+ include/acpi
+ tools/power/acpi
+ D. Architecture Specific ACPICA/ACPI Functionalities - Provided by the
+ ACPI subsystem to offer architecture specific implementation of the
+ ACPI interfaces. They are Linux specific components and are out of
+ the scope of this document.
+ include/asm/acpi.h
+ include/asm/acpi*.h
+ arch/*/acpi
+
+2. ACPICA Release
+
+ The ACPICA project maintains its code base at the following repository URL:
+ https://github.com/acpica/acpica.git. As a rule, a release is made every
+ month.
+
+ As the coding style adopted by the ACPICA project is not acceptable by
+ Linux, there is a release process to convert the ACPICA git commits into
+ Linux patches. The patches generated by this process are referred to as
+ "linuxized ACPICA patches". The release process is carried out on a local
+ copy the ACPICA git repository. Each commit in the monthly release is
+ converted into a linuxized ACPICA patch. Together, they form the montly
+ ACPICA release patchset for the Linux ACPI community. This process is
+ illustrated in the following figure:
+
+ +-----------------------------+
+ | acpica / master (-) commits |
+ +-----------------------------+
+ /|\ |
+ | \|/
+ | /---------------------\ +----------------------+
+ | < Linuxize repo Utility >-->| old linuxized acpica |--+
+ | \---------------------/ +----------------------+ |
+ | |
+ /---------\ |
+ < git reset > \
+ \---------/ \
+ /|\ /+-+
+ | / |
+ +-----------------------------+ | |
+ | acpica / master (+) commits | | |
+ +-----------------------------+ | |
+ | | |
+ \|/ | |
+ /-----------------------\ +----------------------+ | |
+ < Linuxize repo Utilities >-->| new linuxized acpica |--+ |
+ \-----------------------/ +----------------------+ |
+ \|/
+ +--------------------------+ /----------------------\
+ | Linuxized ACPICA Patches |<----------------< Linuxize patch Utility >
+ +--------------------------+ \----------------------/
+ |
+ \|/
+ /---------------------------\
+ < Linux ACPI Community Review >
+ \---------------------------/
+ |
+ \|/
+ +-----------------------+ /------------------\ +----------------+
+ | linux-pm / linux-next |-->< Linux Merge Window >-->| linux / master |
+ +-----------------------+ \------------------/ +----------------+
+
+ Figure 2. ACPICA -> Linux Upstream Process
+
+ NOTE:
+ A. Linuxize Utilities - Provided by the ACPICA repository, including a
+ utility located in source/tools/acpisrc folder and a number of
+ scripts located in generate/linux folder.
+ B. acpica / master - "master" branch of the git repository at
+ <https://github.com/acpica/acpica.git>.
+ C. linux-pm / linux-next - "linux-next" branch of the git repository at
+ <http://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm.git>.
+ D. linux / master - "master" branch of the git repository at
+ <http://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git>.
+
+ Before the linuxized ACPICA patches are sent to the Linux ACPI community
+ for review, there is a quality ensurance build test process to reduce
+ porting issues. Currently this build process only takes care of the
+ following kernel configuration options:
+ CONFIG_ACPI/CONFIG_ACPI_DEBUG/CONFIG_ACPI_DEBUGGER
+
+3. ACPICA Divergences
+
+ Ideally, all of the ACPICA commits should be converted into Linux patches
+ automatically without manual modifications, the "linux / master" tree should
+ contain the ACPICA code that exactly corresponds to the ACPICA code
+ contained in "new linuxized acpica" tree and it should be possible to run
+ the release process fully automatically.
+
+ As a matter of fact, however, there are source code differences between
+ the ACPICA code in Linux and the upstream ACPICA code, referred to as
+ "ACPICA Divergences".
+
+ The various sources of ACPICA divergences include:
+ 1. Legacy divergences - Before the current ACPICA release process was
+ established, there already had been divergences between Linux and
+ ACPICA. Over the past several years those divergences have been greatly
+ reduced, but there still are several ones and it takes time to figure
+ out the underlying reasons for their existence.
+ 2. Manual modifications - Any manual modification (eg. coding style fixes)
+ made directly in the Linux sources obviously hurts the ACPICA release
+ automation. Thus it is recommended to fix such issues in the ACPICA
+ upstream source code and generate the linuxized fix using the ACPICA
+ release utilities (please refer to Section 4 below for the details).
+ 3. Linux specific features - Sometimes it's impossible to use the
+ current ACPICA APIs to implement features required by the Linux kernel,
+ so Linux developers occasionaly have to change ACPICA code directly.
+ Those changes may not be acceptable by ACPICA upstream and in such cases
+ they are left as committed ACPICA divergences unless the ACPICA side can
+ implement new mechanisms as replacements for them.
+ 4. ACPICA release fixups - ACPICA only tests commits using a set of the
+ user space simulation utilies, thus the linuxized ACPICA patches may
+ break the Linux kernel, leaving us build/boot failures. In order to
+ avoid breaking Linux bisection, fixes are applied directly to the
+ linuxized ACPICA patches during the release process. When the release
+ fixups are backported to the upstream ACPICA sources, they must follow
+ the upstream ACPICA rules and so further modifications may appear.
+ That may result in the appearance of new divergences.
+ 5. Fast tracking of ACPICA commits - Some ACPICA commits are regression
+ fixes or stable-candidate material, so they are applied in advance with
+ respect to the ACPICA release process. If such commits are reverted or
+ rebased on the ACPICA side in order to offer better solutions, new ACPICA
+ divergences are generated.
+
+4. ACPICA Development
+
+ This paragraph guides Linux developers to use the ACPICA upstream release
+ utilities to obtain Linux patches corresponding to upstream ACPICA commits
+ before they become available from the ACPICA release process.
+
+ 1. Cherry-pick an ACPICA commit
+
+ First you need to git clone the ACPICA repository and the ACPICA change
+ you want to cherry pick must be committed into the local repository.
+
+ Then the gen-patch.sh command can help to cherry-pick an ACPICA commit
+ from the ACPICA local repository:
+
+ $ git clone https://github.com/acpica/acpica
+ $ cd acpica
+ $ generate/linux/gen-patch.sh -u [commit ID]
+
+ Here the commit ID is the ACPICA local repository commit ID you want to
+ cherry pick. It can be omitted if the commit is "HEAD".
+
+ 2. Cherry-pick recent ACPICA commits
+
+ Sometimes you need to rebase your code on top of the most recent ACPICA
+ changes that haven't been applied to Linux yet.
+
+ You can generate the ACPICA release series yourself and rebase your code on
+ top of the generated ACPICA release patches:
+
+ $ git clone https://github.com/acpica/acpica
+ $ cd acpica
+ $ generate/linux/make-patches.sh -u [commit ID]
+
+ The commit ID should be the last ACPICA commit accepted by Linux. Usually,
+ it is the commit modifying ACPI_CA_VERSION. It can be found by executing
+ "git blame source/include/acpixf.h" and referencing the line that contains
+ "ACPI_CA_VERSION".
+
+ 3. Inspect the current divergences
+
+ If you have local copies of both Linux and upstream ACPICA, you can generate
+ a diff file indicating the state of the current divergences:
+
+ # git clone https://github.com/acpica/acpica
+ # git clone http://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
+ # cd acpica
+ # generate/linux/divergences.sh -s ../linux
diff --git a/Documentation/acpi/ssdt-overlays.txt b/Documentation/acpi/ssdt-overlays.txt
new file mode 100644
index 000000000000..5ae13f161ea2
--- /dev/null
+++ b/Documentation/acpi/ssdt-overlays.txt
@@ -0,0 +1,172 @@
+
+In order to support ACPI open-ended hardware configurations (e.g. development
+boards) we need a way to augment the ACPI configuration provided by the firmware
+image. A common example is connecting sensors on I2C / SPI buses on development
+boards.
+
+Although this can be accomplished by creating a kernel platform driver or
+recompiling the firmware image with updated ACPI tables, neither is practical:
+the former proliferates board specific kernel code while the latter requires
+access to firmware tools which are often not publicly available.
+
+Because ACPI supports external references in AML code a more practical
+way to augment firmware ACPI configuration is by dynamically loading
+user defined SSDT tables that contain the board specific information.
+
+For example, to enumerate a Bosch BMA222E accelerometer on the I2C bus of the
+Minnowboard MAX development board exposed via the LSE connector [1], the
+following ASL code can be used:
+
+DefinitionBlock ("minnowmax.aml", "SSDT", 1, "Vendor", "Accel", 0x00000003)
+{
+ External (\_SB.I2C6, DeviceObj)
+
+ Scope (\_SB.I2C6)
+ {
+ Device (STAC)
+ {
+ Name (_ADR, Zero)
+ Name (_HID, "BMA222E")
+
+ Method (_CRS, 0, Serialized)
+ {
+ Name (RBUF, ResourceTemplate ()
+ {
+ I2cSerialBus (0x0018, ControllerInitiated, 0x00061A80,
+ AddressingMode7Bit, "\\_SB.I2C6", 0x00,
+ ResourceConsumer, ,)
+ GpioInt (Edge, ActiveHigh, Exclusive, PullDown, 0x0000,
+ "\\_SB.GPO2", 0x00, ResourceConsumer, , )
+ { // Pin list
+ 0
+ }
+ })
+ Return (RBUF)
+ }
+ }
+ }
+}
+
+which can then be compiled to AML binary format:
+
+$ iasl minnowmax.asl
+
+Intel ACPI Component Architecture
+ASL Optimizing Compiler version 20140214-64 [Mar 29 2014]
+Copyright (c) 2000 - 2014 Intel Corporation
+
+ASL Input: minnomax.asl - 30 lines, 614 bytes, 7 keywords
+AML Output: minnowmax.aml - 165 bytes, 6 named objects, 1 executable opcodes
+
+[1] http://wiki.minnowboard.org/MinnowBoard_MAX#Low_Speed_Expansion_Connector_.28Top.29
+
+The resulting AML code can then be loaded by the kernel using one of the methods
+below.
+
+== Loading ACPI SSDTs from initrd ==
+
+This option allows loading of user defined SSDTs from initrd and it is useful
+when the system does not support EFI or when there is not enough EFI storage.
+
+It works in a similar way with initrd based ACPI tables override/upgrade: SSDT
+aml code must be placed in the first, uncompressed, initrd under the
+"kernel/firmware/acpi" path. Multiple files can be used and this will translate
+in loading multiple tables. Only SSDT and OEM tables are allowed. See
+initrd_table_override.txt for more details.
+
+Here is an example:
+
+# Add the raw ACPI tables to an uncompressed cpio archive.
+# They must be put into a /kernel/firmware/acpi directory inside the
+# cpio archive.
+# The uncompressed cpio archive must be the first.
+# Other, typically compressed cpio archives, must be
+# concatenated on top of the uncompressed one.
+mkdir -p kernel/firmware/acpi
+cp ssdt.aml kernel/firmware/acpi
+
+# Create the uncompressed cpio archive and concatenate the original initrd
+# on top:
+find kernel | cpio -H newc --create > /boot/instrumented_initrd
+cat /boot/initrd >>/boot/instrumented_initrd
+
+== Loading ACPI SSDTs from EFI variables ==
+
+This is the preferred method, when EFI is supported on the platform, because it
+allows a persistent, OS independent way of storing the user defined SSDTs. There
+is also work underway to implement EFI support for loading user defined SSDTs
+and using this method will make it easier to convert to the EFI loading
+mechanism when that will arrive.
+
+In order to load SSDTs from an EFI variable the efivar_ssdt kernel command line
+parameter can be used. The argument for the option is the variable name to
+use. If there are multiple variables with the same name but with different
+vendor GUIDs, all of them will be loaded.
+
+In order to store the AML code in an EFI variable the efivarfs filesystem can be
+used. It is enabled and mounted by default in /sys/firmware/efi/efivars in all
+recent distribution.
+
+Creating a new file in /sys/firmware/efi/efivars will automatically create a new
+EFI variable. Updating a file in /sys/firmware/efi/efivars will update the EFI
+variable. Please note that the file name needs to be specially formatted as
+"Name-GUID" and that the first 4 bytes in the file (little-endian format)
+represent the attributes of the EFI variable (see EFI_VARIABLE_MASK in
+include/linux/efi.h). Writing to the file must also be done with one write
+operation.
+
+For example, you can use the following bash script to create/update an EFI
+variable with the content from a given file:
+
+#!/bin/sh -e
+
+while ! [ -z "$1" ]; do
+ case "$1" in
+ "-f") filename="$2"; shift;;
+ "-g") guid="$2"; shift;;
+ *) name="$1";;
+ esac
+ shift
+done
+
+usage()
+{
+ echo "Syntax: ${0##*/} -f filename [ -g guid ] name"
+ exit 1
+}
+
+[ -n "$name" -a -f "$filename" ] || usage
+
+EFIVARFS="/sys/firmware/efi/efivars"
+
+[ -d "$EFIVARFS" ] || exit 2
+
+if stat -tf $EFIVARFS | grep -q -v de5e81e4; then
+ mount -t efivarfs none $EFIVARFS
+fi
+
+# try to pick up an existing GUID
+[ -n "$guid" ] || guid=$(find "$EFIVARFS" -name "$name-*" | head -n1 | cut -f2- -d-)
+
+# use a randomly generated GUID
+[ -n "$guid" ] || guid="$(cat /proc/sys/kernel/random/uuid)"
+
+# efivarfs expects all of the data in one write
+tmp=$(mktemp)
+/bin/echo -ne "\007\000\000\000" | cat - $filename > $tmp
+dd if=$tmp of="$EFIVARFS/$name-$guid" bs=$(stat -c %s $tmp)
+rm $tmp
+
+== Loading ACPI SSDTs from configfs ==
+
+This option allows loading of user defined SSDTs from userspace via the configfs
+interface. The CONFIG_ACPI_CONFIGFS option must be select and configfs must be
+mounted. In the following examples, we assume that configfs has been mounted in
+/config.
+
+New tables can be loading by creating new directories in /config/acpi/table/ and
+writing the SSDT aml code in the aml attribute:
+
+cd /config/acpi/table
+mkdir my_ssdt
+cat ~/ssdt.aml > my_ssdt/aml
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 118538b548f6..769db8399ac8 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -582,6 +582,9 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
bootmem_debug [KNL] Enable bootmem allocator debug messages.
+ bert_disable [ACPI]
+ Disable BERT OS support on buggy BIOSes.
+
bttv.card= [HW,V4L] bttv (bt848 + bt878 based grabber cards)
bttv.radio= Most important insmod options are available as
kernel args too.
@@ -1193,6 +1196,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Address Range Mirroring feature even if your box
doesn't support it.
+ efivar_ssdt= [EFI; X86] Name of an EFI variable that contains an SSDT
+ that is to be dynamically loaded by Linux. If there are
+ multiple variables with the same name but with different
+ vendor GUIDs, all of them will be loaded. See
+ Documentation/acpi/ssdt-overlays.txt for details.
+
+
eisa_irq_edge= [PARISC,HW]
See header of drivers/parisc/eisa.c.