summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/DMA-API.txt49
-rw-r--r--Documentation/DMA-mapping.txt22
2 files changed, 53 insertions, 18 deletions
diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt
index 1af0f2d50220..2ffb0d62f0fe 100644
--- a/Documentation/DMA-API.txt
+++ b/Documentation/DMA-API.txt
@@ -33,7 +33,9 @@ pci_alloc_consistent(struct pci_dev *dev, size_t size,
Consistent memory is memory for which a write by either the device or
the processor can immediately be read by the processor or device
-without having to worry about caching effects.
+without having to worry about caching effects. (You may however need
+to make sure to flush the processor's write buffers before telling
+devices to read that memory.)
This routine allocates a region of <size> bytes of consistent memory.
it also returns a <dma_handle> which may be cast to an unsigned
@@ -304,12 +306,12 @@ dma address with dma_mapping_error(). A non zero return value means the mapping
could not be created and the driver should take appropriate action (eg
reduce current DMA mapping usage or delay and try again later).
-int
-dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
- enum dma_data_direction direction)
-int
-pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg,
- int nents, int direction)
+ int
+ dma_map_sg(struct device *dev, struct scatterlist *sg,
+ int nents, enum dma_data_direction direction)
+ int
+ pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg,
+ int nents, int direction)
Maps a scatter gather list from the block layer.
@@ -327,12 +329,33 @@ critical that the driver do something, in the case of a block driver
aborting the request or even oopsing is better than doing nothing and
corrupting the filesystem.
-void
-dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
- enum dma_data_direction direction)
-void
-pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg,
- int nents, int direction)
+With scatterlists, you use the resulting mapping like this:
+
+ int i, count = dma_map_sg(dev, sglist, nents, direction);
+ struct scatterlist *sg;
+
+ for (i = 0, sg = sglist; i < count; i++, sg++) {
+ hw_address[i] = sg_dma_address(sg);
+ hw_len[i] = sg_dma_len(sg);
+ }
+
+where nents is the number of entries in the sglist.
+
+The implementation is free to merge several consecutive sglist entries
+into one (e.g. with an IOMMU, or if several pages just happen to be
+physically contiguous) and returns the actual number of sg entries it
+mapped them to. On failure 0, is returned.
+
+Then you should loop count times (note: this can be less than nents times)
+and use sg_dma_address() and sg_dma_len() macros where you previously
+accessed sg->address and sg->length as shown above.
+
+ void
+ dma_unmap_sg(struct device *dev, struct scatterlist *sg,
+ int nhwentries, enum dma_data_direction direction)
+ void
+ pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg,
+ int nents, int direction)
unmap the previously mapped scatter/gather list. All the parameters
must be the same as those and passed in to the scatter/gather mapping
diff --git a/Documentation/DMA-mapping.txt b/Documentation/DMA-mapping.txt
index 10bf4deb96aa..7c717699032c 100644
--- a/Documentation/DMA-mapping.txt
+++ b/Documentation/DMA-mapping.txt
@@ -58,11 +58,15 @@ translating each of those pages back to a kernel address using
something like __va(). [ EDIT: Update this when we integrate
Gerd Knorr's generic code which does this. ]
-This rule also means that you may not use kernel image addresses
-(ie. items in the kernel's data/text/bss segment, or your driver's)
-nor may you use kernel stack addresses for DMA. Both of these items
-might be mapped somewhere entirely different than the rest of physical
-memory.
+This rule also means that you may use neither kernel image addresses
+(items in data/text/bss segments), nor module image addresses, nor
+stack addresses for DMA. These could all be mapped somewhere entirely
+different than the rest of physical memory. Even if those classes of
+memory could physically work with DMA, you'd need to ensure the I/O
+buffers were cacheline-aligned. Without that, you'd see cacheline
+sharing problems (data corruption) on CPUs with DMA-incoherent caches.
+(The CPU could write to one word, DMA would write to a different one
+in the same cache line, and one of them could be overwritten.)
Also, this means that you cannot take the return of a kmap()
call and DMA to/from that. This is similar to vmalloc().
@@ -284,6 +288,11 @@ There are two types of DMA mappings:
in order to get correct behavior on all platforms.
+ Also, on some platforms your driver may need to flush CPU write
+ buffers in much the same way as it needs to flush write buffers
+ found in PCI bridges (such as by reading a register's value
+ after writing it).
+
- Streaming DMA mappings which are usually mapped for one DMA transfer,
unmapped right after it (unless you use pci_dma_sync_* below) and for which
hardware can optimize for sequential accesses.
@@ -303,6 +312,9 @@ There are two types of DMA mappings:
Neither type of DMA mapping has alignment restrictions that come
from PCI, although some devices may have such restrictions.
+Also, systems with caches that aren't DMA-coherent will work better
+when the underlying buffers don't share cache lines with other data.
+
Using Consistent DMA mappings.