diff options
Diffstat (limited to 'Documentation/misc-devices/mei/mei-client-bus.txt')
-rw-r--r-- | Documentation/misc-devices/mei/mei-client-bus.txt | 141 |
1 files changed, 0 insertions, 141 deletions
diff --git a/Documentation/misc-devices/mei/mei-client-bus.txt b/Documentation/misc-devices/mei/mei-client-bus.txt deleted file mode 100644 index 743be4ec8989..000000000000 --- a/Documentation/misc-devices/mei/mei-client-bus.txt +++ /dev/null @@ -1,141 +0,0 @@ -Intel(R) Management Engine (ME) Client bus API -============================================== - - -Rationale -========= - -MEI misc character device is useful for dedicated applications to send and receive -data to the many FW appliance found in Intel's ME from the user space. -However for some of the ME functionalities it make sense to leverage existing software -stack and expose them through existing kernel subsystems. - -In order to plug seamlessly into the kernel device driver model we add kernel virtual -bus abstraction on top of the MEI driver. This allows implementing linux kernel drivers -for the various MEI features as a stand alone entities found in their respective subsystem. -Existing device drivers can even potentially be re-used by adding an MEI CL bus layer to -the existing code. - - -MEI CL bus API -============== - -A driver implementation for an MEI Client is very similar to existing bus -based device drivers. The driver registers itself as an MEI CL bus driver through -the mei_cl_driver structure: - -struct mei_cl_driver { - struct device_driver driver; - const char *name; - - const struct mei_cl_device_id *id_table; - - int (*probe)(struct mei_cl_device *dev, const struct mei_cl_id *id); - int (*remove)(struct mei_cl_device *dev); -}; - -struct mei_cl_id { - char name[MEI_NAME_SIZE]; - kernel_ulong_t driver_info; -}; - -The mei_cl_id structure allows the driver to bind itself against a device name. - -To actually register a driver on the ME Client bus one must call the mei_cl_add_driver() -API. This is typically called at module init time. - -Once registered on the ME Client bus, a driver will typically try to do some I/O on -this bus and this should be done through the mei_cl_send() and mei_cl_recv() -routines. The latter is synchronous (blocks and sleeps until data shows up). -In order for drivers to be notified of pending events waiting for them (e.g. -an Rx event) they can register an event handler through the -mei_cl_register_event_cb() routine. Currently only the MEI_EVENT_RX event -will trigger an event handler call and the driver implementation is supposed -to call mei_recv() from the event handler in order to fetch the pending -received buffers. - - -Example -======= - -As a theoretical example let's pretend the ME comes with a "contact" NFC IP. -The driver init and exit routines for this device would look like: - -#define CONTACT_DRIVER_NAME "contact" - -static struct mei_cl_device_id contact_mei_cl_tbl[] = { - { CONTACT_DRIVER_NAME, }, - - /* required last entry */ - { } -}; -MODULE_DEVICE_TABLE(mei_cl, contact_mei_cl_tbl); - -static struct mei_cl_driver contact_driver = { - .id_table = contact_mei_tbl, - .name = CONTACT_DRIVER_NAME, - - .probe = contact_probe, - .remove = contact_remove, -}; - -static int contact_init(void) -{ - int r; - - r = mei_cl_driver_register(&contact_driver); - if (r) { - pr_err(CONTACT_DRIVER_NAME ": driver registration failed\n"); - return r; - } - - return 0; -} - -static void __exit contact_exit(void) -{ - mei_cl_driver_unregister(&contact_driver); -} - -module_init(contact_init); -module_exit(contact_exit); - -And the driver's simplified probe routine would look like that: - -int contact_probe(struct mei_cl_device *dev, struct mei_cl_device_id *id) -{ - struct contact_driver *contact; - - [...] - mei_cl_enable_device(dev); - - mei_cl_register_event_cb(dev, contact_event_cb, contact); - - return 0; -} - -In the probe routine the driver first enable the MEI device and then registers -an ME bus event handler which is as close as it can get to registering a -threaded IRQ handler. -The handler implementation will typically call some I/O routine depending on -the pending events: - -#define MAX_NFC_PAYLOAD 128 - -static void contact_event_cb(struct mei_cl_device *dev, u32 events, - void *context) -{ - struct contact_driver *contact = context; - - if (events & BIT(MEI_EVENT_RX)) { - u8 payload[MAX_NFC_PAYLOAD]; - int payload_size; - - payload_size = mei_recv(dev, payload, MAX_NFC_PAYLOAD); - if (payload_size <= 0) - return; - - /* Hook to the NFC subsystem */ - nfc_hci_recv_frame(contact->hdev, payload, payload_size); - } -} |