summaryrefslogtreecommitdiff
path: root/kernel/irq/spurious.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2014-06-08 11:31:16 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2014-06-08 11:31:16 -0700
commit3f17ea6dea8ba5668873afa54628a91aaa3fb1c0 (patch)
treeafbeb2accd4c2199ddd705ae943995b143a0af02 /kernel/irq/spurious.c
parent1860e379875dfe7271c649058aeddffe5afd9d0d (diff)
parent1a5700bc2d10cd379a795fd2bb377a190af5acd4 (diff)
Merge branch 'next' (accumulated 3.16 merge window patches) into master
Now that 3.15 is released, this merges the 'next' branch into 'master', bringing us to the normal situation where my 'master' branch is the merge window. * accumulated work in next: (6809 commits) ufs: sb mutex merge + mutex_destroy powerpc: update comments for generic idle conversion cris: update comments for generic idle conversion idle: remove cpu_idle() forward declarations nbd: zero from and len fields in NBD_CMD_DISCONNECT. mm: convert some level-less printks to pr_* MAINTAINERS: adi-buildroot-devel is moderated MAINTAINERS: add linux-api for review of API/ABI changes mm/kmemleak-test.c: use pr_fmt for logging fs/dlm/debug_fs.c: replace seq_printf by seq_puts fs/dlm/lockspace.c: convert simple_str to kstr fs/dlm/config.c: convert simple_str to kstr mm: mark remap_file_pages() syscall as deprecated mm: memcontrol: remove unnecessary memcg argument from soft limit functions mm: memcontrol: clean up memcg zoneinfo lookup mm/memblock.c: call kmemleak directly from memblock_(alloc|free) mm/mempool.c: update the kmemleak stack trace for mempool allocations lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations mm: introduce kmemleak_update_trace() mm/kmemleak.c: use %u to print ->checksum ...
Diffstat (limited to 'kernel/irq/spurious.c')
-rw-r--r--kernel/irq/spurious.c106
1 files changed, 102 insertions, 4 deletions
diff --git a/kernel/irq/spurious.c b/kernel/irq/spurious.c
index a1d8cc63b56e..e2514b0e439e 100644
--- a/kernel/irq/spurious.c
+++ b/kernel/irq/spurious.c
@@ -270,6 +270,8 @@ try_misrouted_irq(unsigned int irq, struct irq_desc *desc,
return action && (action->flags & IRQF_IRQPOLL);
}
+#define SPURIOUS_DEFERRED 0x80000000
+
void note_interrupt(unsigned int irq, struct irq_desc *desc,
irqreturn_t action_ret)
{
@@ -277,15 +279,111 @@ void note_interrupt(unsigned int irq, struct irq_desc *desc,
irq_settings_is_polled(desc))
return;
- /* we get here again via the threaded handler */
- if (action_ret == IRQ_WAKE_THREAD)
- return;
-
if (bad_action_ret(action_ret)) {
report_bad_irq(irq, desc, action_ret);
return;
}
+ /*
+ * We cannot call note_interrupt from the threaded handler
+ * because we need to look at the compound of all handlers
+ * (primary and threaded). Aside of that in the threaded
+ * shared case we have no serialization against an incoming
+ * hardware interrupt while we are dealing with a threaded
+ * result.
+ *
+ * So in case a thread is woken, we just note the fact and
+ * defer the analysis to the next hardware interrupt.
+ *
+ * The threaded handlers store whether they sucessfully
+ * handled an interrupt and we check whether that number
+ * changed versus the last invocation.
+ *
+ * We could handle all interrupts with the delayed by one
+ * mechanism, but for the non forced threaded case we'd just
+ * add pointless overhead to the straight hardirq interrupts
+ * for the sake of a few lines less code.
+ */
+ if (action_ret & IRQ_WAKE_THREAD) {
+ /*
+ * There is a thread woken. Check whether one of the
+ * shared primary handlers returned IRQ_HANDLED. If
+ * not we defer the spurious detection to the next
+ * interrupt.
+ */
+ if (action_ret == IRQ_WAKE_THREAD) {
+ int handled;
+ /*
+ * We use bit 31 of thread_handled_last to
+ * denote the deferred spurious detection
+ * active. No locking necessary as
+ * thread_handled_last is only accessed here
+ * and we have the guarantee that hard
+ * interrupts are not reentrant.
+ */
+ if (!(desc->threads_handled_last & SPURIOUS_DEFERRED)) {
+ desc->threads_handled_last |= SPURIOUS_DEFERRED;
+ return;
+ }
+ /*
+ * Check whether one of the threaded handlers
+ * returned IRQ_HANDLED since the last
+ * interrupt happened.
+ *
+ * For simplicity we just set bit 31, as it is
+ * set in threads_handled_last as well. So we
+ * avoid extra masking. And we really do not
+ * care about the high bits of the handled
+ * count. We just care about the count being
+ * different than the one we saw before.
+ */
+ handled = atomic_read(&desc->threads_handled);
+ handled |= SPURIOUS_DEFERRED;
+ if (handled != desc->threads_handled_last) {
+ action_ret = IRQ_HANDLED;
+ /*
+ * Note: We keep the SPURIOUS_DEFERRED
+ * bit set. We are handling the
+ * previous invocation right now.
+ * Keep it for the current one, so the
+ * next hardware interrupt will
+ * account for it.
+ */
+ desc->threads_handled_last = handled;
+ } else {
+ /*
+ * None of the threaded handlers felt
+ * responsible for the last interrupt
+ *
+ * We keep the SPURIOUS_DEFERRED bit
+ * set in threads_handled_last as we
+ * need to account for the current
+ * interrupt as well.
+ */
+ action_ret = IRQ_NONE;
+ }
+ } else {
+ /*
+ * One of the primary handlers returned
+ * IRQ_HANDLED. So we don't care about the
+ * threaded handlers on the same line. Clear
+ * the deferred detection bit.
+ *
+ * In theory we could/should check whether the
+ * deferred bit is set and take the result of
+ * the previous run into account here as
+ * well. But it's really not worth the
+ * trouble. If every other interrupt is
+ * handled we never trigger the spurious
+ * detector. And if this is just the one out
+ * of 100k unhandled ones which is handled
+ * then we merily delay the spurious detection
+ * by one hard interrupt. Not a real problem.
+ */
+ desc->threads_handled_last &= ~SPURIOUS_DEFERRED;
+ }
+ }
+
if (unlikely(action_ret == IRQ_NONE)) {
/*
* If we are seeing only the odd spurious IRQ caused by