diff options
author | Johannes Thumshirn <johannes.thumshirn@wdc.com> | 2021-04-19 16:41:02 +0900 |
---|---|---|
committer | David Sterba <dsterba@suse.com> | 2021-04-20 20:46:31 +0200 |
commit | 18bb8bbf13c1839b43c9e09e76d397b753989af2 (patch) | |
tree | 129cbdd4389bbaa1dc598da8a40138729f26f77b /fs/btrfs/block-group.h | |
parent | f33720657d29d6b7282dd2e5e8634e0a39ad372e (diff) |
btrfs: zoned: automatically reclaim zones
When a file gets deleted on a zoned file system, the space freed is not
returned back into the block group's free space, but is migrated to
zone_unusable.
As this zone_unusable space is behind the current write pointer it is not
possible to use it for new allocations. In the current implementation a
zone is reset once all of the block group's space is accounted as zone
unusable.
This behaviour can lead to premature ENOSPC errors on a busy file system.
Instead of only reclaiming the zone once it is completely unusable,
kick off a reclaim job once the amount of unusable bytes exceeds a user
configurable threshold between 51% and 100%. It can be set per mounted
filesystem via the sysfs tunable bg_reclaim_threshold which is set to 75%
by default.
Similar to reclaiming unused block groups, these dirty block groups are
added to a to_reclaim list and then on a transaction commit, the reclaim
process is triggered but after we deleted unused block groups, which will
free space for the relocation process.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Diffstat (limited to 'fs/btrfs/block-group.h')
-rw-r--r-- | fs/btrfs/block-group.h | 3 |
1 files changed, 3 insertions, 0 deletions
diff --git a/fs/btrfs/block-group.h b/fs/btrfs/block-group.h index 3ecc3372a5ce..7b927425dc71 100644 --- a/fs/btrfs/block-group.h +++ b/fs/btrfs/block-group.h @@ -264,6 +264,9 @@ int btrfs_remove_block_group(struct btrfs_trans_handle *trans, u64 group_start, struct extent_map *em); void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info); void btrfs_mark_bg_unused(struct btrfs_block_group *bg); +void btrfs_reclaim_bgs_work(struct work_struct *work); +void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info); +void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg); int btrfs_read_block_groups(struct btrfs_fs_info *info); int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, u64 type, u64 chunk_offset, u64 size); |