summaryrefslogtreecommitdiff
path: root/drivers/staging/android/uapi
diff options
context:
space:
mode:
authorGreg Hartman <ghartman@google.com>2018-04-12 22:17:22 -0700
committerGreg Kroah-Hartman <gregkh@linuxfoundation.org>2018-04-23 14:51:37 +0200
commit3d2ec9dcd5539d421a6814ded10a1a3008e70548 (patch)
tree13a04a91565fea190b1ebaa8896a2e1f80282140 /drivers/staging/android/uapi
parent7954c88408ca0c49689e75347739c2d5785bf5e0 (diff)
staging: Android: Add 'vsoc' driver for cuttlefish.
The cuttlefish system is a virtual SoC architecture based on QEMU. It uses the QEMU ivshmem feature to share memory regions between guest and host with a custom protocol. Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Arve Hjønnevåg <arve@android.com> Cc: Todd Kjos <tkjos@android.com> Cc: Martijn Coenen <maco@android.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: devel@driverdev.osuosl.org Cc: kernel-team@android.com Signed-off-by: Greg Hartman <ghartman@google.com> [astrachan: rebased against 4.16, added TODO, fixed checkpatch issues] Signed-off-by: Alistair Strachan <astrachan@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Diffstat (limited to 'drivers/staging/android/uapi')
-rw-r--r--drivers/staging/android/uapi/vsoc_shm.h303
1 files changed, 303 insertions, 0 deletions
diff --git a/drivers/staging/android/uapi/vsoc_shm.h b/drivers/staging/android/uapi/vsoc_shm.h
new file mode 100644
index 000000000000..741b1387c25b
--- /dev/null
+++ b/drivers/staging/android/uapi/vsoc_shm.h
@@ -0,0 +1,303 @@
+/*
+ * Copyright (C) 2017 Google, Inc.
+ *
+ * This software is licensed under the terms of the GNU General Public
+ * License version 2, as published by the Free Software Foundation, and
+ * may be copied, distributed, and modified under those terms.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ */
+
+#ifndef _UAPI_LINUX_VSOC_SHM_H
+#define _UAPI_LINUX_VSOC_SHM_H
+
+#include <linux/types.h>
+
+/**
+ * A permission is a token that permits a receiver to read and/or write an area
+ * of memory within a Vsoc region.
+ *
+ * An fd_scoped permission grants both read and write access, and can be
+ * attached to a file description (see open(2)).
+ * Ownership of the area can then be shared by passing a file descriptor
+ * among processes.
+ *
+ * begin_offset and end_offset define the area of memory that is controlled by
+ * the permission. owner_offset points to a word, also in shared memory, that
+ * controls ownership of the area.
+ *
+ * ownership of the region expires when the associated file description is
+ * released.
+ *
+ * At most one permission can be attached to each file description.
+ *
+ * This is useful when implementing HALs like gralloc that scope and pass
+ * ownership of shared resources via file descriptors.
+ *
+ * The caller is responsibe for doing any fencing.
+ *
+ * The calling process will normally identify a currently free area of
+ * memory. It will construct a proposed fd_scoped_permission_arg structure:
+ *
+ * begin_offset and end_offset describe the area being claimed
+ *
+ * owner_offset points to the location in shared memory that indicates the
+ * owner of the area.
+ *
+ * owned_value is the value that will be stored in owner_offset iff the
+ * permission can be granted. It must be different than VSOC_REGION_FREE.
+ *
+ * Two fd_scoped_permission structures are compatible if they vary only by
+ * their owned_value fields.
+ *
+ * The driver ensures that, for any group of simultaneous callers proposing
+ * compatible fd_scoped_permissions, it will accept exactly one of the
+ * propopsals. The other callers will get a failure with errno of EAGAIN.
+ *
+ * A process receiving a file descriptor can identify the region being
+ * granted using the VSOC_GET_FD_SCOPED_PERMISSION ioctl.
+ */
+struct fd_scoped_permission {
+ __u32 begin_offset;
+ __u32 end_offset;
+ __u32 owner_offset;
+ __u32 owned_value;
+};
+
+/*
+ * This value represents a free area of memory. The driver expects to see this
+ * value at owner_offset when creating a permission otherwise it will not do it,
+ * and will write this value back once the permission is no longer needed.
+ */
+#define VSOC_REGION_FREE ((__u32)0)
+
+/**
+ * ioctl argument for VSOC_CREATE_FD_SCOPE_PERMISSION
+ */
+struct fd_scoped_permission_arg {
+ struct fd_scoped_permission perm;
+ __s32 managed_region_fd;
+};
+
+#define VSOC_NODE_FREE ((__u32)0)
+
+/*
+ * Describes a signal table in shared memory. Each non-zero entry in the
+ * table indicates that the receiver should signal the futex at the given
+ * offset. Offsets are relative to the region, not the shared memory window.
+ *
+ * interrupt_signalled_offset is used to reliably signal interrupts across the
+ * vmm boundary. There are two roles: transmitter and receiver. For example,
+ * in the host_to_guest_signal_table the host is the transmitter and the
+ * guest is the receiver. The protocol is as follows:
+ *
+ * 1. The transmitter should convert the offset of the futex to an offset
+ * in the signal table [0, (1 << num_nodes_lg2))
+ * The transmitter can choose any appropriate hashing algorithm, including
+ * hash = futex_offset & ((1 << num_nodes_lg2) - 1)
+ *
+ * 3. The transmitter should atomically compare and swap futex_offset with 0
+ * at hash. There are 3 possible outcomes
+ * a. The swap fails because the futex_offset is already in the table.
+ * The transmitter should stop.
+ * b. Some other offset is in the table. This is a hash collision. The
+ * transmitter should move to another table slot and try again. One
+ * possible algorithm:
+ * hash = (hash + 1) & ((1 << num_nodes_lg2) - 1)
+ * c. The swap worked. Continue below.
+ *
+ * 3. The transmitter atomically swaps 1 with the value at the
+ * interrupt_signalled_offset. There are two outcomes:
+ * a. The prior value was 1. In this case an interrupt has already been
+ * posted. The transmitter is done.
+ * b. The prior value was 0, indicating that the receiver may be sleeping.
+ * The transmitter will issue an interrupt.
+ *
+ * 4. On waking the receiver immediately exchanges a 0 with the
+ * interrupt_signalled_offset. If it receives a 0 then this a spurious
+ * interrupt. That may occasionally happen in the current protocol, but
+ * should be rare.
+ *
+ * 5. The receiver scans the signal table by atomicaly exchanging 0 at each
+ * location. If a non-zero offset is returned from the exchange the
+ * receiver wakes all sleepers at the given offset:
+ * futex((int*)(region_base + old_value), FUTEX_WAKE, MAX_INT);
+ *
+ * 6. The receiver thread then does a conditional wait, waking immediately
+ * if the value at interrupt_signalled_offset is non-zero. This catches cases
+ * here additional signals were posted while the table was being scanned.
+ * On the guest the wait is handled via the VSOC_WAIT_FOR_INCOMING_INTERRUPT
+ * ioctl.
+ */
+struct vsoc_signal_table_layout {
+ /* log_2(Number of signal table entries) */
+ __u32 num_nodes_lg2;
+ /*
+ * Offset to the first signal table entry relative to the start of the
+ * region
+ */
+ __u32 futex_uaddr_table_offset;
+ /*
+ * Offset to an atomic_t / atomic uint32_t. A non-zero value indicates
+ * that one or more offsets are currently posted in the table.
+ * semi-unique access to an entry in the table
+ */
+ __u32 interrupt_signalled_offset;
+};
+
+#define VSOC_REGION_WHOLE ((__s32)0)
+#define VSOC_DEVICE_NAME_SZ 16
+
+/**
+ * Each HAL would (usually) talk to a single device region
+ * Mulitple entities care about these regions:
+ * - The ivshmem_server will populate the regions in shared memory
+ * - The guest kernel will read the region, create minor device nodes, and
+ * allow interested parties to register for FUTEX_WAKE events in the region
+ * - HALs will access via the minor device nodes published by the guest kernel
+ * - Host side processes will access the region via the ivshmem_server:
+ * 1. Pass name to ivshmem_server at a UNIX socket
+ * 2. ivshmemserver will reply with 2 fds:
+ * - host->guest doorbell fd
+ * - guest->host doorbell fd
+ * - fd for the shared memory region
+ * - region offset
+ * 3. Start a futex receiver thread on the doorbell fd pointed at the
+ * signal_nodes
+ */
+struct vsoc_device_region {
+ __u16 current_version;
+ __u16 min_compatible_version;
+ __u32 region_begin_offset;
+ __u32 region_end_offset;
+ __u32 offset_of_region_data;
+ struct vsoc_signal_table_layout guest_to_host_signal_table;
+ struct vsoc_signal_table_layout host_to_guest_signal_table;
+ /* Name of the device. Must always be terminated with a '\0', so
+ * the longest supported device name is 15 characters.
+ */
+ char device_name[VSOC_DEVICE_NAME_SZ];
+ /* There are two ways that permissions to access regions are handled:
+ * - When subdivided_by is VSOC_REGION_WHOLE, any process that can
+ * open the device node for the region gains complete access to it.
+ * - When subdivided is set processes that open the region cannot
+ * access it. Access to a sub-region must be established by invoking
+ * the VSOC_CREATE_FD_SCOPE_PERMISSION ioctl on the region
+ * referenced in subdivided_by, providing a fileinstance
+ * (represented by a fd) opened on this region.
+ */
+ __u32 managed_by;
+};
+
+/*
+ * The vsoc layout descriptor.
+ * The first 4K should be reserved for the shm header and region descriptors.
+ * The regions should be page aligned.
+ */
+
+struct vsoc_shm_layout_descriptor {
+ __u16 major_version;
+ __u16 minor_version;
+
+ /* size of the shm. This may be redundant but nice to have */
+ __u32 size;
+
+ /* number of shared memory regions */
+ __u32 region_count;
+
+ /* The offset to the start of region descriptors */
+ __u32 vsoc_region_desc_offset;
+};
+
+/*
+ * This specifies the current version that should be stored in
+ * vsoc_shm_layout_descriptor.major_version and
+ * vsoc_shm_layout_descriptor.minor_version.
+ * It should be updated only if the vsoc_device_region and
+ * vsoc_shm_layout_descriptor structures have changed.
+ * Versioning within each region is transferred
+ * via the min_compatible_version and current_version fields in
+ * vsoc_device_region. The driver does not consult these fields: they are left
+ * for the HALs and host processes and will change independently of the layout
+ * version.
+ */
+#define CURRENT_VSOC_LAYOUT_MAJOR_VERSION 2
+#define CURRENT_VSOC_LAYOUT_MINOR_VERSION 0
+
+#define VSOC_CREATE_FD_SCOPED_PERMISSION \
+ _IOW(0xF5, 0, struct fd_scoped_permission)
+#define VSOC_GET_FD_SCOPED_PERMISSION _IOR(0xF5, 1, struct fd_scoped_permission)
+
+/*
+ * This is used to signal the host to scan the guest_to_host_signal_table
+ * for new futexes to wake. This sends an interrupt if one is not already
+ * in flight.
+ */
+#define VSOC_MAYBE_SEND_INTERRUPT_TO_HOST _IO(0xF5, 2)
+
+/*
+ * When this returns the guest will scan host_to_guest_signal_table to
+ * check for new futexes to wake.
+ */
+/* TODO(ghartman): Consider moving this to the bottom half */
+#define VSOC_WAIT_FOR_INCOMING_INTERRUPT _IO(0xF5, 3)
+
+/*
+ * Guest HALs will use this to retrieve the region description after
+ * opening their device node.
+ */
+#define VSOC_DESCRIBE_REGION _IOR(0xF5, 4, struct vsoc_device_region)
+
+/*
+ * Wake any threads that may be waiting for a host interrupt on this region.
+ * This is mostly used during shutdown.
+ */
+#define VSOC_SELF_INTERRUPT _IO(0xF5, 5)
+
+/*
+ * This is used to signal the host to scan the guest_to_host_signal_table
+ * for new futexes to wake. This sends an interrupt unconditionally.
+ */
+#define VSOC_SEND_INTERRUPT_TO_HOST _IO(0xF5, 6)
+
+enum wait_types {
+ VSOC_WAIT_UNDEFINED = 0,
+ VSOC_WAIT_IF_EQUAL = 1,
+ VSOC_WAIT_IF_EQUAL_TIMEOUT = 2
+};
+
+/*
+ * Wait for a condition to be true
+ *
+ * Note, this is sized and aligned so the 32 bit and 64 bit layouts are
+ * identical.
+ */
+struct vsoc_cond_wait {
+ /* Input: Offset of the 32 bit word to check */
+ __u32 offset;
+ /* Input: Value that will be compared with the offset */
+ __u32 value;
+ /* Monotonic time to wake at in seconds */
+ __u64 wake_time_sec;
+ /* Input: Monotonic time to wait in nanoseconds */
+ __u32 wake_time_nsec;
+ /* Input: Type of wait */
+ __u32 wait_type;
+ /* Output: Number of times the thread woke before returning. */
+ __u32 wakes;
+ /* Ensure that we're 8-byte aligned and 8 byte length for 32/64 bit
+ * compatibility.
+ */
+ __u32 reserved_1;
+};
+
+#define VSOC_COND_WAIT _IOWR(0xF5, 7, struct vsoc_cond_wait)
+
+/* Wake any local threads waiting at the offset given in arg */
+#define VSOC_COND_WAKE _IO(0xF5, 8)
+
+#endif /* _UAPI_LINUX_VSOC_SHM_H */