diff options
author | Tom Lendacky <thomas.lendacky@amd.com> | 2017-07-17 16:10:32 -0500 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2017-07-18 11:38:05 +0200 |
commit | 6ebcb060713f614c92216482eed501b31cee74ec (patch) | |
tree | 0d09b269dd7e14a122e2728612e8eed95955d056 /arch/x86/mm/mem_encrypt.c | |
parent | db516997a985b461f021d594e78155bbc7fc3e7e (diff) |
x86/mm: Add support to encrypt the kernel in-place
Add the support to encrypt the kernel in-place. This is done by creating
new page mappings for the kernel - a decrypted write-protected mapping
and an encrypted mapping. The kernel is encrypted by copying it through
a temporary buffer.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/c039bf9412ef95e1e6bf4fdf8facab95e00c717b.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'arch/x86/mm/mem_encrypt.c')
-rw-r--r-- | arch/x86/mm/mem_encrypt.c | 310 |
1 files changed, 310 insertions, 0 deletions
diff --git a/arch/x86/mm/mem_encrypt.c b/arch/x86/mm/mem_encrypt.c index a7400ec8538b..e5d543938b0f 100644 --- a/arch/x86/mm/mem_encrypt.c +++ b/arch/x86/mm/mem_encrypt.c @@ -21,6 +21,8 @@ #include <asm/setup.h> #include <asm/bootparam.h> #include <asm/set_memory.h> +#include <asm/cacheflush.h> +#include <asm/sections.h> /* * Since SME related variables are set early in the boot process they must @@ -199,8 +201,316 @@ void swiotlb_set_mem_attributes(void *vaddr, unsigned long size) set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT); } +static void __init sme_clear_pgd(pgd_t *pgd_base, unsigned long start, + unsigned long end) +{ + unsigned long pgd_start, pgd_end, pgd_size; + pgd_t *pgd_p; + + pgd_start = start & PGDIR_MASK; + pgd_end = end & PGDIR_MASK; + + pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1); + pgd_size *= sizeof(pgd_t); + + pgd_p = pgd_base + pgd_index(start); + + memset(pgd_p, 0, pgd_size); +} + +#define PGD_FLAGS _KERNPG_TABLE_NOENC +#define P4D_FLAGS _KERNPG_TABLE_NOENC +#define PUD_FLAGS _KERNPG_TABLE_NOENC +#define PMD_FLAGS (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) + +static void __init *sme_populate_pgd(pgd_t *pgd_base, void *pgtable_area, + unsigned long vaddr, pmdval_t pmd_val) +{ + pgd_t *pgd_p; + p4d_t *p4d_p; + pud_t *pud_p; + pmd_t *pmd_p; + + pgd_p = pgd_base + pgd_index(vaddr); + if (native_pgd_val(*pgd_p)) { + if (IS_ENABLED(CONFIG_X86_5LEVEL)) + p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK); + else + pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK); + } else { + pgd_t pgd; + + if (IS_ENABLED(CONFIG_X86_5LEVEL)) { + p4d_p = pgtable_area; + memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D); + pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D; + + pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS); + } else { + pud_p = pgtable_area; + memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD); + pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD; + + pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS); + } + native_set_pgd(pgd_p, pgd); + } + + if (IS_ENABLED(CONFIG_X86_5LEVEL)) { + p4d_p += p4d_index(vaddr); + if (native_p4d_val(*p4d_p)) { + pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK); + } else { + p4d_t p4d; + + pud_p = pgtable_area; + memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD); + pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD; + + p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS); + native_set_p4d(p4d_p, p4d); + } + } + + pud_p += pud_index(vaddr); + if (native_pud_val(*pud_p)) { + if (native_pud_val(*pud_p) & _PAGE_PSE) + goto out; + + pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK); + } else { + pud_t pud; + + pmd_p = pgtable_area; + memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD); + pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD; + + pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS); + native_set_pud(pud_p, pud); + } + + pmd_p += pmd_index(vaddr); + if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE)) + native_set_pmd(pmd_p, native_make_pmd(pmd_val)); + +out: + return pgtable_area; +} + +static unsigned long __init sme_pgtable_calc(unsigned long len) +{ + unsigned long p4d_size, pud_size, pmd_size; + unsigned long total; + + /* + * Perform a relatively simplistic calculation of the pagetable + * entries that are needed. That mappings will be covered by 2MB + * PMD entries so we can conservatively calculate the required + * number of P4D, PUD and PMD structures needed to perform the + * mappings. Incrementing the count for each covers the case where + * the addresses cross entries. + */ + if (IS_ENABLED(CONFIG_X86_5LEVEL)) { + p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1; + p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D; + pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1; + pud_size *= sizeof(pud_t) * PTRS_PER_PUD; + } else { + p4d_size = 0; + pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1; + pud_size *= sizeof(pud_t) * PTRS_PER_PUD; + } + pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1; + pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD; + + total = p4d_size + pud_size + pmd_size; + + /* + * Now calculate the added pagetable structures needed to populate + * the new pagetables. + */ + if (IS_ENABLED(CONFIG_X86_5LEVEL)) { + p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE; + p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D; + pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE; + pud_size *= sizeof(pud_t) * PTRS_PER_PUD; + } else { + p4d_size = 0; + pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE; + pud_size *= sizeof(pud_t) * PTRS_PER_PUD; + } + pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE; + pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD; + + total += p4d_size + pud_size + pmd_size; + + return total; +} + void __init sme_encrypt_kernel(void) { + unsigned long workarea_start, workarea_end, workarea_len; + unsigned long execute_start, execute_end, execute_len; + unsigned long kernel_start, kernel_end, kernel_len; + unsigned long pgtable_area_len; + unsigned long paddr, pmd_flags; + unsigned long decrypted_base; + void *pgtable_area; + pgd_t *pgd; + + if (!sme_active()) + return; + + /* + * Prepare for encrypting the kernel by building new pagetables with + * the necessary attributes needed to encrypt the kernel in place. + * + * One range of virtual addresses will map the memory occupied + * by the kernel as encrypted. + * + * Another range of virtual addresses will map the memory occupied + * by the kernel as decrypted and write-protected. + * + * The use of write-protect attribute will prevent any of the + * memory from being cached. + */ + + /* Physical addresses gives us the identity mapped virtual addresses */ + kernel_start = __pa_symbol(_text); + kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE); + kernel_len = kernel_end - kernel_start; + + /* Set the encryption workarea to be immediately after the kernel */ + workarea_start = kernel_end; + + /* + * Calculate required number of workarea bytes needed: + * executable encryption area size: + * stack page (PAGE_SIZE) + * encryption routine page (PAGE_SIZE) + * intermediate copy buffer (PMD_PAGE_SIZE) + * pagetable structures for the encryption of the kernel + * pagetable structures for workarea (in case not currently mapped) + */ + execute_start = workarea_start; + execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE; + execute_len = execute_end - execute_start; + + /* + * One PGD for both encrypted and decrypted mappings and a set of + * PUDs and PMDs for each of the encrypted and decrypted mappings. + */ + pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; + pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; + + /* PUDs and PMDs needed in the current pagetables for the workarea */ + pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); + + /* + * The total workarea includes the executable encryption area and + * the pagetable area. + */ + workarea_len = execute_len + pgtable_area_len; + workarea_end = workarea_start + workarea_len; + + /* + * Set the address to the start of where newly created pagetable + * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable + * structures are created when the workarea is added to the current + * pagetables and when the new encrypted and decrypted kernel + * mappings are populated. + */ + pgtable_area = (void *)execute_end; + + /* + * Make sure the current pagetable structure has entries for + * addressing the workarea. + */ + pgd = (pgd_t *)native_read_cr3_pa(); + paddr = workarea_start; + while (paddr < workarea_end) { + pgtable_area = sme_populate_pgd(pgd, pgtable_area, + paddr, + paddr + PMD_FLAGS); + + paddr += PMD_PAGE_SIZE; + } + + /* Flush the TLB - no globals so cr3 is enough */ + native_write_cr3(__native_read_cr3()); + + /* + * A new pagetable structure is being built to allow for the kernel + * to be encrypted. It starts with an empty PGD that will then be + * populated with new PUDs and PMDs as the encrypted and decrypted + * kernel mappings are created. + */ + pgd = pgtable_area; + memset(pgd, 0, sizeof(*pgd) * PTRS_PER_PGD); + pgtable_area += sizeof(*pgd) * PTRS_PER_PGD; + + /* Add encrypted kernel (identity) mappings */ + pmd_flags = PMD_FLAGS | _PAGE_ENC; + paddr = kernel_start; + while (paddr < kernel_end) { + pgtable_area = sme_populate_pgd(pgd, pgtable_area, + paddr, + paddr + pmd_flags); + + paddr += PMD_PAGE_SIZE; + } + + /* + * A different PGD index/entry must be used to get different + * pagetable entries for the decrypted mapping. Choose the next + * PGD index and convert it to a virtual address to be used as + * the base of the mapping. + */ + decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); + decrypted_base <<= PGDIR_SHIFT; + + /* Add decrypted, write-protected kernel (non-identity) mappings */ + pmd_flags = (PMD_FLAGS & ~_PAGE_CACHE_MASK) | (_PAGE_PAT | _PAGE_PWT); + paddr = kernel_start; + while (paddr < kernel_end) { + pgtable_area = sme_populate_pgd(pgd, pgtable_area, + paddr + decrypted_base, + paddr + pmd_flags); + + paddr += PMD_PAGE_SIZE; + } + + /* Add decrypted workarea mappings to both kernel mappings */ + paddr = workarea_start; + while (paddr < workarea_end) { + pgtable_area = sme_populate_pgd(pgd, pgtable_area, + paddr, + paddr + PMD_FLAGS); + + pgtable_area = sme_populate_pgd(pgd, pgtable_area, + paddr + decrypted_base, + paddr + PMD_FLAGS); + + paddr += PMD_PAGE_SIZE; + } + + /* Perform the encryption */ + sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, + kernel_len, workarea_start, (unsigned long)pgd); + + /* + * At this point we are running encrypted. Remove the mappings for + * the decrypted areas - all that is needed for this is to remove + * the PGD entry/entries. + */ + sme_clear_pgd(pgd, kernel_start + decrypted_base, + kernel_end + decrypted_base); + + sme_clear_pgd(pgd, workarea_start + decrypted_base, + workarea_end + decrypted_base); + + /* Flush the TLB - no globals so cr3 is enough */ + native_write_cr3(__native_read_cr3()); } void __init sme_enable(void) |