summaryrefslogtreecommitdiff
path: root/arch/x86/include
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2015-07-18 10:49:57 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2015-07-18 10:49:57 -0700
commit0e1dbccd8f60c1c83d86d693bb87363b7de2319c (patch)
treea77e5bb1ab755edef9db644672fe7cd3a0dc0f73 /arch/x86/include
parentdae57fb64ef636a225d3e6c0ddbbc8e32674dd81 (diff)
parent5aaeb5c01c5b6c0be7b7aadbf3ace9f3a4458c3d (diff)
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar: "Two families of fixes: - Fix an FPU context related boot crash on newer x86 hardware with larger context sizes than what most people test. To fix this without ugly kludges or extensive reverts we had to touch core task allocator, to allow x86 to determine the task size dynamically, at boot time. I've tested it on a number of x86 platforms, and I cross-built it to a handful of architectures: (warns) (warns) testing x86-64: -git: pass ( 0), -tip: pass ( 0) testing x86-32: -git: pass ( 0), -tip: pass ( 0) testing arm: -git: pass ( 1359), -tip: pass ( 1359) testing cris: -git: pass ( 1031), -tip: pass ( 1031) testing m32r: -git: pass ( 1135), -tip: pass ( 1135) testing m68k: -git: pass ( 1471), -tip: pass ( 1471) testing mips: -git: pass ( 1162), -tip: pass ( 1162) testing mn10300: -git: pass ( 1058), -tip: pass ( 1058) testing parisc: -git: pass ( 1846), -tip: pass ( 1846) testing sparc: -git: pass ( 1185), -tip: pass ( 1185) ... so I hope the cross-arch impact 'none', as intended. (by Dave Hansen) - Fix various NMI handling related bugs unearthed by the big asm code rewrite and generally make the NMI code more robust and more maintainable while at it. These changes are a bit late in the cycle, I hope they are still acceptable. (by Andy Lutomirski)" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/fpu, sched: Introduce CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT and use it on x86 x86/fpu, sched: Dynamically allocate 'struct fpu' x86/entry/64, x86/nmi/64: Add CONFIG_DEBUG_ENTRY NMI testing code x86/nmi/64: Make the "NMI executing" variable more consistent x86/nmi/64: Minor asm simplification x86/nmi/64: Use DF to avoid userspace RSP confusing nested NMI detection x86/nmi/64: Reorder nested NMI checks x86/nmi/64: Improve nested NMI comments x86/nmi/64: Switch stacks on userspace NMI entry x86/nmi/64: Remove asm code that saves CR2 x86/nmi: Enable nested do_nmi() handling for 64-bit kernels
Diffstat (limited to 'arch/x86/include')
-rw-r--r--arch/x86/include/asm/fpu/types.h72
-rw-r--r--arch/x86/include/asm/processor.h10
2 files changed, 45 insertions, 37 deletions
diff --git a/arch/x86/include/asm/fpu/types.h b/arch/x86/include/asm/fpu/types.h
index 0637826292de..c49c5173158e 100644
--- a/arch/x86/include/asm/fpu/types.h
+++ b/arch/x86/include/asm/fpu/types.h
@@ -189,6 +189,7 @@ union fpregs_state {
struct fxregs_state fxsave;
struct swregs_state soft;
struct xregs_state xsave;
+ u8 __padding[PAGE_SIZE];
};
/*
@@ -198,40 +199,6 @@ union fpregs_state {
*/
struct fpu {
/*
- * @state:
- *
- * In-memory copy of all FPU registers that we save/restore
- * over context switches. If the task is using the FPU then
- * the registers in the FPU are more recent than this state
- * copy. If the task context-switches away then they get
- * saved here and represent the FPU state.
- *
- * After context switches there may be a (short) time period
- * during which the in-FPU hardware registers are unchanged
- * and still perfectly match this state, if the tasks
- * scheduled afterwards are not using the FPU.
- *
- * This is the 'lazy restore' window of optimization, which
- * we track though 'fpu_fpregs_owner_ctx' and 'fpu->last_cpu'.
- *
- * We detect whether a subsequent task uses the FPU via setting
- * CR0::TS to 1, which causes any FPU use to raise a #NM fault.
- *
- * During this window, if the task gets scheduled again, we
- * might be able to skip having to do a restore from this
- * memory buffer to the hardware registers - at the cost of
- * incurring the overhead of #NM fault traps.
- *
- * Note that on modern CPUs that support the XSAVEOPT (or other
- * optimized XSAVE instructions), we don't use #NM traps anymore,
- * as the hardware can track whether FPU registers need saving
- * or not. On such CPUs we activate the non-lazy ('eagerfpu')
- * logic, which unconditionally saves/restores all FPU state
- * across context switches. (if FPU state exists.)
- */
- union fpregs_state state;
-
- /*
* @last_cpu:
*
* Records the last CPU on which this context was loaded into
@@ -288,6 +255,43 @@ struct fpu {
* deal with bursty apps that only use the FPU for a short time:
*/
unsigned char counter;
+ /*
+ * @state:
+ *
+ * In-memory copy of all FPU registers that we save/restore
+ * over context switches. If the task is using the FPU then
+ * the registers in the FPU are more recent than this state
+ * copy. If the task context-switches away then they get
+ * saved here and represent the FPU state.
+ *
+ * After context switches there may be a (short) time period
+ * during which the in-FPU hardware registers are unchanged
+ * and still perfectly match this state, if the tasks
+ * scheduled afterwards are not using the FPU.
+ *
+ * This is the 'lazy restore' window of optimization, which
+ * we track though 'fpu_fpregs_owner_ctx' and 'fpu->last_cpu'.
+ *
+ * We detect whether a subsequent task uses the FPU via setting
+ * CR0::TS to 1, which causes any FPU use to raise a #NM fault.
+ *
+ * During this window, if the task gets scheduled again, we
+ * might be able to skip having to do a restore from this
+ * memory buffer to the hardware registers - at the cost of
+ * incurring the overhead of #NM fault traps.
+ *
+ * Note that on modern CPUs that support the XSAVEOPT (or other
+ * optimized XSAVE instructions), we don't use #NM traps anymore,
+ * as the hardware can track whether FPU registers need saving
+ * or not. On such CPUs we activate the non-lazy ('eagerfpu')
+ * logic, which unconditionally saves/restores all FPU state
+ * across context switches. (if FPU state exists.)
+ */
+ union fpregs_state state;
+ /*
+ * WARNING: 'state' is dynamically-sized. Do not put
+ * anything after it here.
+ */
};
#endif /* _ASM_X86_FPU_H */
diff --git a/arch/x86/include/asm/processor.h b/arch/x86/include/asm/processor.h
index 43e6519df0d5..944f1785ed0d 100644
--- a/arch/x86/include/asm/processor.h
+++ b/arch/x86/include/asm/processor.h
@@ -390,9 +390,6 @@ struct thread_struct {
#endif
unsigned long gs;
- /* Floating point and extended processor state */
- struct fpu fpu;
-
/* Save middle states of ptrace breakpoints */
struct perf_event *ptrace_bps[HBP_NUM];
/* Debug status used for traps, single steps, etc... */
@@ -418,6 +415,13 @@ struct thread_struct {
unsigned long iopl;
/* Max allowed port in the bitmap, in bytes: */
unsigned io_bitmap_max;
+
+ /* Floating point and extended processor state */
+ struct fpu fpu;
+ /*
+ * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
+ * the end.
+ */
};
/*