summaryrefslogtreecommitdiff
path: root/arch/powerpc/math-emu/sfp-machine.h
diff options
context:
space:
mode:
authorPaul Mackerras <paulus@samba.org>2006-03-28 17:03:19 +1100
committerPaul Mackerras <paulus@samba.org>2006-03-28 17:03:19 +1100
commitcf66c897d7fa07f57452b1a369aec37d97b11e31 (patch)
treeeb74b71c2ff288f4d77423bb7e54c3c55ef08bf9 /arch/powerpc/math-emu/sfp-machine.h
parentfacee873de8da5fe709c194f98eb0f2cc642a38c (diff)
parent78af90629ce98c8383ea16928e110eb97b889be6 (diff)
Merge branch '85xx' of git://git.kernel.org/pub/scm/linux/kernel/git/galak/powerpc
Diffstat (limited to 'arch/powerpc/math-emu/sfp-machine.h')
-rw-r--r--arch/powerpc/math-emu/sfp-machine.h377
1 files changed, 377 insertions, 0 deletions
diff --git a/arch/powerpc/math-emu/sfp-machine.h b/arch/powerpc/math-emu/sfp-machine.h
new file mode 100644
index 000000000000..4b17d83cfcdd
--- /dev/null
+++ b/arch/powerpc/math-emu/sfp-machine.h
@@ -0,0 +1,377 @@
+/* Machine-dependent software floating-point definitions. PPC version.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If
+ not, write to the Free Software Foundation, Inc.,
+ 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+ Actually, this is a PPC (32bit) version, written based on the
+ i386, sparc, and sparc64 versions, by me,
+ Peter Maydell (pmaydell@chiark.greenend.org.uk).
+ Comments are by and large also mine, although they may be inaccurate.
+
+ In picking out asm fragments I've gone with the lowest common
+ denominator, which also happens to be the hardware I have :->
+ That is, a SPARC without hardware multiply and divide.
+ */
+
+/* basic word size definitions */
+#define _FP_W_TYPE_SIZE 32
+#define _FP_W_TYPE unsigned long
+#define _FP_WS_TYPE signed long
+#define _FP_I_TYPE long
+
+#define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2))
+#define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1))
+#define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2))
+
+/* You can optionally code some things like addition in asm. For
+ * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't
+ * then you get a fragment of C code [if you change an #ifdef 0
+ * in op-2.h] or a call to add_ssaaaa (see below).
+ * Good places to look for asm fragments to use are gcc and glibc.
+ * gcc's longlong.h is useful.
+ */
+
+/* We need to know how to multiply and divide. If the host word size
+ * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which
+ * codes the multiply with whatever gcc does to 'a * b'.
+ * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm
+ * function that can multiply two 1W values and get a 2W result.
+ * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which
+ * does bitshifting to avoid overflow.
+ * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size
+ * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or
+ * _FP_DIV_HELP_ldiv (see op-1.h).
+ * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W).
+ * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd
+ * to do this.]
+ * In general, 'n' is the number of words required to hold the type,
+ * and 't' is either S, D or Q for single/double/quad.
+ * -- PMM
+ */
+/* Example: SPARC64:
+ * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_imm(S,R,X,Y)
+ * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm)
+ * #define _FP_MUL_MEAT_Q(R,X,Y) _FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm)
+ *
+ * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm)
+ * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv(D,R,X,Y)
+ * #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv_64(Q,R,X,Y)
+ *
+ * Example: i386:
+ * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64)
+ * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64)
+ *
+ * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32)
+ * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)
+ */
+
+#define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,umul_ppmm)
+#define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,umul_ppmm)
+
+#define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y)
+#define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)
+
+/* These macros define what NaN looks like. They're supposed to expand to
+ * a comma-separated set of 32bit unsigned ints that encode NaN.
+ */
+#define _FP_NANFRAC_S _FP_QNANBIT_S
+#define _FP_NANFRAC_D _FP_QNANBIT_D, 0
+#define _FP_NANFRAC_Q _FP_QNANBIT_Q, 0, 0, 0
+
+#define _FP_KEEPNANFRACP 1
+
+/* This macro appears to be called when both X and Y are NaNs, and
+ * has to choose one and copy it to R. i386 goes for the larger of the
+ * two, sparc64 just picks Y. I don't understand this at all so I'll
+ * go with sparc64 because it's shorter :-> -- PMM
+ */
+#define _FP_CHOOSENAN(fs, wc, R, X, Y) \
+ do { \
+ R##_s = Y##_s; \
+ _FP_FRAC_COPY_##wc(R,Y); \
+ R##_c = FP_CLS_NAN; \
+ } while (0)
+
+
+extern void fp_unpack_d(long *, unsigned long *, unsigned long *,
+ long *, long *, void *);
+extern int fp_pack_d(void *, long, unsigned long, unsigned long, long, long);
+extern int fp_pack_ds(void *, long, unsigned long, unsigned long, long, long);
+
+#define __FP_UNPACK_RAW_1(fs, X, val) \
+ do { \
+ union _FP_UNION_##fs *_flo = \
+ (union _FP_UNION_##fs *)val; \
+ \
+ X##_f = _flo->bits.frac; \
+ X##_e = _flo->bits.exp; \
+ X##_s = _flo->bits.sign; \
+ } while (0)
+
+#define __FP_UNPACK_RAW_2(fs, X, val) \
+ do { \
+ union _FP_UNION_##fs *_flo = \
+ (union _FP_UNION_##fs *)val; \
+ \
+ X##_f0 = _flo->bits.frac0; \
+ X##_f1 = _flo->bits.frac1; \
+ X##_e = _flo->bits.exp; \
+ X##_s = _flo->bits.sign; \
+ } while (0)
+
+#define __FP_UNPACK_S(X,val) \
+ do { \
+ __FP_UNPACK_RAW_1(S,X,val); \
+ _FP_UNPACK_CANONICAL(S,1,X); \
+ } while (0)
+
+#define __FP_UNPACK_D(X,val) \
+ fp_unpack_d(&X##_s, &X##_f1, &X##_f0, &X##_e, &X##_c, val)
+
+#define __FP_PACK_RAW_1(fs, val, X) \
+ do { \
+ union _FP_UNION_##fs *_flo = \
+ (union _FP_UNION_##fs *)val; \
+ \
+ _flo->bits.frac = X##_f; \
+ _flo->bits.exp = X##_e; \
+ _flo->bits.sign = X##_s; \
+ } while (0)
+
+#define __FP_PACK_RAW_2(fs, val, X) \
+ do { \
+ union _FP_UNION_##fs *_flo = \
+ (union _FP_UNION_##fs *)val; \
+ \
+ _flo->bits.frac0 = X##_f0; \
+ _flo->bits.frac1 = X##_f1; \
+ _flo->bits.exp = X##_e; \
+ _flo->bits.sign = X##_s; \
+ } while (0)
+
+#include <linux/kernel.h>
+#include <linux/sched.h>
+
+#define __FPU_FPSCR (current->thread.fpscr.val)
+
+/* We only actually write to the destination register
+ * if exceptions signalled (if any) will not trap.
+ */
+#define __FPU_ENABLED_EXC \
+({ \
+ (__FPU_FPSCR >> 3) & 0x1f; \
+})
+
+#define __FPU_TRAP_P(bits) \
+ ((__FPU_ENABLED_EXC & (bits)) != 0)
+
+#define __FP_PACK_S(val,X) \
+({ int __exc = _FP_PACK_CANONICAL(S,1,X); \
+ if(!__exc || !__FPU_TRAP_P(__exc)) \
+ __FP_PACK_RAW_1(S,val,X); \
+ __exc; \
+})
+
+#define __FP_PACK_D(val,X) \
+ fp_pack_d(val, X##_s, X##_f1, X##_f0, X##_e, X##_c)
+
+#define __FP_PACK_DS(val,X) \
+ fp_pack_ds(val, X##_s, X##_f1, X##_f0, X##_e, X##_c)
+
+/* Obtain the current rounding mode. */
+#define FP_ROUNDMODE \
+({ \
+ __FPU_FPSCR & 0x3; \
+})
+
+/* the asm fragments go here: all these are taken from glibc-2.0.5's
+ * stdlib/longlong.h
+ */
+
+#include <linux/types.h>
+#include <asm/byteorder.h>
+
+/* add_ssaaaa is used in op-2.h and should be equivalent to
+ * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al))
+ * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
+ * high_addend_2, low_addend_2) adds two UWtype integers, composed by
+ * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2
+ * respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow
+ * (i.e. carry out) is not stored anywhere, and is lost.
+ */
+#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
+ do { \
+ if (__builtin_constant_p (bh) && (bh) == 0) \
+ __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{aze|addze} %0,%2" \
+ : "=r" ((USItype)(sh)), \
+ "=&r" ((USItype)(sl)) \
+ : "%r" ((USItype)(ah)), \
+ "%r" ((USItype)(al)), \
+ "rI" ((USItype)(bl))); \
+ else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \
+ __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{ame|addme} %0,%2" \
+ : "=r" ((USItype)(sh)), \
+ "=&r" ((USItype)(sl)) \
+ : "%r" ((USItype)(ah)), \
+ "%r" ((USItype)(al)), \
+ "rI" ((USItype)(bl))); \
+ else \
+ __asm__ ("{a%I5|add%I5c} %1,%4,%5\n\t{ae|adde} %0,%2,%3" \
+ : "=r" ((USItype)(sh)), \
+ "=&r" ((USItype)(sl)) \
+ : "%r" ((USItype)(ah)), \
+ "r" ((USItype)(bh)), \
+ "%r" ((USItype)(al)), \
+ "rI" ((USItype)(bl))); \
+ } while (0)
+
+/* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to
+ * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al))
+ * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend,
+ * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers,
+ * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and
+ * LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE
+ * and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere,
+ * and is lost.
+ */
+#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
+ do { \
+ if (__builtin_constant_p (ah) && (ah) == 0) \
+ __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfze|subfze} %0,%2" \
+ : "=r" ((USItype)(sh)), \
+ "=&r" ((USItype)(sl)) \
+ : "r" ((USItype)(bh)), \
+ "rI" ((USItype)(al)), \
+ "r" ((USItype)(bl))); \
+ else if (__builtin_constant_p (ah) && (ah) ==~(USItype) 0) \
+ __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfme|subfme} %0,%2" \
+ : "=r" ((USItype)(sh)), \
+ "=&r" ((USItype)(sl)) \
+ : "r" ((USItype)(bh)), \
+ "rI" ((USItype)(al)), \
+ "r" ((USItype)(bl))); \
+ else if (__builtin_constant_p (bh) && (bh) == 0) \
+ __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{ame|addme} %0,%2" \
+ : "=r" ((USItype)(sh)), \
+ "=&r" ((USItype)(sl)) \
+ : "r" ((USItype)(ah)), \
+ "rI" ((USItype)(al)), \
+ "r" ((USItype)(bl))); \
+ else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \
+ __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{aze|addze} %0,%2" \
+ : "=r" ((USItype)(sh)), \
+ "=&r" ((USItype)(sl)) \
+ : "r" ((USItype)(ah)), \
+ "rI" ((USItype)(al)), \
+ "r" ((USItype)(bl))); \
+ else \
+ __asm__ ("{sf%I4|subf%I4c} %1,%5,%4\n\t{sfe|subfe} %0,%3,%2" \
+ : "=r" ((USItype)(sh)), \
+ "=&r" ((USItype)(sl)) \
+ : "r" ((USItype)(ah)), \
+ "r" ((USItype)(bh)), \
+ "rI" ((USItype)(al)), \
+ "r" ((USItype)(bl))); \
+ } while (0)
+
+/* asm fragments for mul and div */
+
+/* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two
+ * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype
+ * word product in HIGH_PROD and LOW_PROD.
+ */
+#define umul_ppmm(ph, pl, m0, m1) \
+ do { \
+ USItype __m0 = (m0), __m1 = (m1); \
+ __asm__ ("mulhwu %0,%1,%2" \
+ : "=r" ((USItype)(ph)) \
+ : "%r" (__m0), \
+ "r" (__m1)); \
+ (pl) = __m0 * __m1; \
+ } while (0)
+
+/* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
+ * denominator) divides a UDWtype, composed by the UWtype integers
+ * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient
+ * in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less
+ * than DENOMINATOR for correct operation. If, in addition, the most
+ * significant bit of DENOMINATOR must be 1, then the pre-processor symbol
+ * UDIV_NEEDS_NORMALIZATION is defined to 1.
+ */
+#define udiv_qrnnd(q, r, n1, n0, d) \
+ do { \
+ UWtype __d1, __d0, __q1, __q0, __r1, __r0, __m; \
+ __d1 = __ll_highpart (d); \
+ __d0 = __ll_lowpart (d); \
+ \
+ __r1 = (n1) % __d1; \
+ __q1 = (n1) / __d1; \
+ __m = (UWtype) __q1 * __d0; \
+ __r1 = __r1 * __ll_B | __ll_highpart (n0); \
+ if (__r1 < __m) \
+ { \
+ __q1--, __r1 += (d); \
+ if (__r1 >= (d)) /* we didn't get carry when adding to __r1 */ \
+ if (__r1 < __m) \
+ __q1--, __r1 += (d); \
+ } \
+ __r1 -= __m; \
+ \
+ __r0 = __r1 % __d1; \
+ __q0 = __r1 / __d1; \
+ __m = (UWtype) __q0 * __d0; \
+ __r0 = __r0 * __ll_B | __ll_lowpart (n0); \
+ if (__r0 < __m) \
+ { \
+ __q0--, __r0 += (d); \
+ if (__r0 >= (d)) \
+ if (__r0 < __m) \
+ __q0--, __r0 += (d); \
+ } \
+ __r0 -= __m; \
+ \
+ (q) = (UWtype) __q1 * __ll_B | __q0; \
+ (r) = __r0; \
+ } while (0)
+
+#define UDIV_NEEDS_NORMALIZATION 1
+
+#define abort() \
+ return 0
+
+#ifdef __BIG_ENDIAN
+#define __BYTE_ORDER __BIG_ENDIAN
+#else
+#define __BYTE_ORDER __LITTLE_ENDIAN
+#endif
+
+/* Exception flags. */
+#define EFLAG_INVALID (1 << (31 - 2))
+#define EFLAG_OVERFLOW (1 << (31 - 3))
+#define EFLAG_UNDERFLOW (1 << (31 - 4))
+#define EFLAG_DIVZERO (1 << (31 - 5))
+#define EFLAG_INEXACT (1 << (31 - 6))
+
+#define EFLAG_VXSNAN (1 << (31 - 7))
+#define EFLAG_VXISI (1 << (31 - 8))
+#define EFLAG_VXIDI (1 << (31 - 9))
+#define EFLAG_VXZDZ (1 << (31 - 10))
+#define EFLAG_VXIMZ (1 << (31 - 11))
+#define EFLAG_VXVC (1 << (31 - 12))
+#define EFLAG_VXSOFT (1 << (31 - 21))
+#define EFLAG_VXSQRT (1 << (31 - 22))
+#define EFLAG_VXCVI (1 << (31 - 23))