summaryrefslogtreecommitdiff
path: root/Makefile
diff options
context:
space:
mode:
authorRoman Gushchin <guro@fb.com>2018-10-26 15:03:19 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2018-10-26 16:25:19 -0700
commit9b6f7e163cd0f468d1b9696b785659d3c27c8667 (patch)
treee92c50c153ad34cfe632761d782ffa872d99f91f /Makefile
parentc5fd3ca06b4699e251b4a1fb808c2d5124494101 (diff)
mm: rework memcg kernel stack accounting
If CONFIG_VMAP_STACK is set, kernel stacks are allocated using __vmalloc_node_range() with __GFP_ACCOUNT. So kernel stack pages are charged against corresponding memory cgroups on allocation and uncharged on releasing them. The problem is that we do cache kernel stacks in small per-cpu caches and do reuse them for new tasks, which can belong to different memory cgroups. Each stack page still holds a reference to the original cgroup, so the cgroup can't be released until the vmap area is released. To make this happen we need more than two subsequent exits without forks in between on the current cpu, which makes it very unlikely to happen. As a result, I saw a significant number of dying cgroups (in theory, up to 2 * number_of_cpu + number_of_tasks), which can't be released even by significant memory pressure. As a cgroup structure can take a significant amount of memory (first of all, per-cpu data like memcg statistics), it leads to a noticeable waste of memory. Link: http://lkml.kernel.org/r/20180827162621.30187-1-guro@fb.com Fixes: ac496bf48d97 ("fork: Optimize task creation by caching two thread stacks per CPU if CONFIG_VMAP_STACK=y") Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Makefile')
0 files changed, 0 insertions, 0 deletions