summaryrefslogtreecommitdiff
path: root/Documentation/virt/kvm/hypercalls.txt
diff options
context:
space:
mode:
authorChristoph Hellwig <hch@lst.de>2019-07-24 09:24:49 +0200
committerPaolo Bonzini <pbonzini@redhat.com>2019-07-24 10:52:11 +0200
commit2f5947dfcaecb99f2dd559156eecbeb7b95e4c02 (patch)
treea16db9103d69f0d5fae6de67987a1f1476f4598b /Documentation/virt/kvm/hypercalls.txt
parentc6bf2ae931adbd3e10967e12142856439a211813 (diff)
Documentation: move Documentation/virtual to Documentation/virt
Renaming docs seems to be en vogue at the moment, so fix on of the grossly misnamed directories. We usually never use "virtual" as a shortcut for virtualization in the kernel, but always virt, as seen in the virt/ top-level directory. Fix up the documentation to match that. Fixes: ed16648eb5b8 ("Move kvm, uml, and lguest subdirectories under a common "virtual" directory, I.E:") Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'Documentation/virt/kvm/hypercalls.txt')
-rw-r--r--Documentation/virt/kvm/hypercalls.txt154
1 files changed, 154 insertions, 0 deletions
diff --git a/Documentation/virt/kvm/hypercalls.txt b/Documentation/virt/kvm/hypercalls.txt
new file mode 100644
index 000000000000..5f6d291bd004
--- /dev/null
+++ b/Documentation/virt/kvm/hypercalls.txt
@@ -0,0 +1,154 @@
+Linux KVM Hypercall:
+===================
+X86:
+ KVM Hypercalls have a three-byte sequence of either the vmcall or the vmmcall
+ instruction. The hypervisor can replace it with instructions that are
+ guaranteed to be supported.
+
+ Up to four arguments may be passed in rbx, rcx, rdx, and rsi respectively.
+ The hypercall number should be placed in rax and the return value will be
+ placed in rax. No other registers will be clobbered unless explicitly stated
+ by the particular hypercall.
+
+S390:
+ R2-R7 are used for parameters 1-6. In addition, R1 is used for hypercall
+ number. The return value is written to R2.
+
+ S390 uses diagnose instruction as hypercall (0x500) along with hypercall
+ number in R1.
+
+ For further information on the S390 diagnose call as supported by KVM,
+ refer to Documentation/virt/kvm/s390-diag.txt.
+
+ PowerPC:
+ It uses R3-R10 and hypercall number in R11. R4-R11 are used as output registers.
+ Return value is placed in R3.
+
+ KVM hypercalls uses 4 byte opcode, that are patched with 'hypercall-instructions'
+ property inside the device tree's /hypervisor node.
+ For more information refer to Documentation/virt/kvm/ppc-pv.txt
+
+MIPS:
+ KVM hypercalls use the HYPCALL instruction with code 0 and the hypercall
+ number in $2 (v0). Up to four arguments may be placed in $4-$7 (a0-a3) and
+ the return value is placed in $2 (v0).
+
+KVM Hypercalls Documentation
+===========================
+The template for each hypercall is:
+1. Hypercall name.
+2. Architecture(s)
+3. Status (deprecated, obsolete, active)
+4. Purpose
+
+1. KVM_HC_VAPIC_POLL_IRQ
+------------------------
+Architecture: x86
+Status: active
+Purpose: Trigger guest exit so that the host can check for pending
+interrupts on reentry.
+
+2. KVM_HC_MMU_OP
+------------------------
+Architecture: x86
+Status: deprecated.
+Purpose: Support MMU operations such as writing to PTE,
+flushing TLB, release PT.
+
+3. KVM_HC_FEATURES
+------------------------
+Architecture: PPC
+Status: active
+Purpose: Expose hypercall availability to the guest. On x86 platforms, cpuid
+used to enumerate which hypercalls are available. On PPC, either device tree
+based lookup ( which is also what EPAPR dictates) OR KVM specific enumeration
+mechanism (which is this hypercall) can be used.
+
+4. KVM_HC_PPC_MAP_MAGIC_PAGE
+------------------------
+Architecture: PPC
+Status: active
+Purpose: To enable communication between the hypervisor and guest there is a
+shared page that contains parts of supervisor visible register state.
+The guest can map this shared page to access its supervisor register through
+memory using this hypercall.
+
+5. KVM_HC_KICK_CPU
+------------------------
+Architecture: x86
+Status: active
+Purpose: Hypercall used to wakeup a vcpu from HLT state
+Usage example : A vcpu of a paravirtualized guest that is busywaiting in guest
+kernel mode for an event to occur (ex: a spinlock to become available) can
+execute HLT instruction once it has busy-waited for more than a threshold
+time-interval. Execution of HLT instruction would cause the hypervisor to put
+the vcpu to sleep until occurrence of an appropriate event. Another vcpu of the
+same guest can wakeup the sleeping vcpu by issuing KVM_HC_KICK_CPU hypercall,
+specifying APIC ID (a1) of the vcpu to be woken up. An additional argument (a0)
+is used in the hypercall for future use.
+
+
+6. KVM_HC_CLOCK_PAIRING
+------------------------
+Architecture: x86
+Status: active
+Purpose: Hypercall used to synchronize host and guest clocks.
+Usage:
+
+a0: guest physical address where host copies
+"struct kvm_clock_offset" structure.
+
+a1: clock_type, ATM only KVM_CLOCK_PAIRING_WALLCLOCK (0)
+is supported (corresponding to the host's CLOCK_REALTIME clock).
+
+ struct kvm_clock_pairing {
+ __s64 sec;
+ __s64 nsec;
+ __u64 tsc;
+ __u32 flags;
+ __u32 pad[9];
+ };
+
+ Where:
+ * sec: seconds from clock_type clock.
+ * nsec: nanoseconds from clock_type clock.
+ * tsc: guest TSC value used to calculate sec/nsec pair
+ * flags: flags, unused (0) at the moment.
+
+The hypercall lets a guest compute a precise timestamp across
+host and guest. The guest can use the returned TSC value to
+compute the CLOCK_REALTIME for its clock, at the same instant.
+
+Returns KVM_EOPNOTSUPP if the host does not use TSC clocksource,
+or if clock type is different than KVM_CLOCK_PAIRING_WALLCLOCK.
+
+6. KVM_HC_SEND_IPI
+------------------------
+Architecture: x86
+Status: active
+Purpose: Send IPIs to multiple vCPUs.
+
+a0: lower part of the bitmap of destination APIC IDs
+a1: higher part of the bitmap of destination APIC IDs
+a2: the lowest APIC ID in bitmap
+a3: APIC ICR
+
+The hypercall lets a guest send multicast IPIs, with at most 128
+128 destinations per hypercall in 64-bit mode and 64 vCPUs per
+hypercall in 32-bit mode. The destinations are represented by a
+bitmap contained in the first two arguments (a0 and a1). Bit 0 of
+a0 corresponds to the APIC ID in the third argument (a2), bit 1
+corresponds to the APIC ID a2+1, and so on.
+
+Returns the number of CPUs to which the IPIs were delivered successfully.
+
+7. KVM_HC_SCHED_YIELD
+------------------------
+Architecture: x86
+Status: active
+Purpose: Hypercall used to yield if the IPI target vCPU is preempted
+
+a0: destination APIC ID
+
+Usage example: When sending a call-function IPI-many to vCPUs, yield if
+any of the IPI target vCPUs was preempted.