diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /Documentation/sound/alsa/CMIPCI.txt |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'Documentation/sound/alsa/CMIPCI.txt')
-rw-r--r-- | Documentation/sound/alsa/CMIPCI.txt | 242 |
1 files changed, 242 insertions, 0 deletions
diff --git a/Documentation/sound/alsa/CMIPCI.txt b/Documentation/sound/alsa/CMIPCI.txt new file mode 100644 index 000000000000..4a7df771b806 --- /dev/null +++ b/Documentation/sound/alsa/CMIPCI.txt @@ -0,0 +1,242 @@ + Brief Notes on C-Media 8738/8338 Driver + ======================================= + + Takashi Iwai <tiwai@suse.de> + + +Front/Rear Multi-channel Playback +--------------------------------- + +CM8x38 chip can use ADC as the second DAC so that two different stereo +channels can be used for front/rear playbacks. Since there are two +DACs, both streams are handled independently unlike the 4/6ch multi- +channel playbacks in the section below. + +As default, ALSA driver assigns the first PCM device (i.e. hw:0,0 for +card#0) for front and 4/6ch playbacks, while the second PCM device +(hw:0,1) is assigned to the second DAC for rear playback. + +There are slight difference between two DACs. + +- The first DAC supports U8 and S16LE formats, while the second DAC + supports only S16LE. +- The seconde DAC supports only two channel stereo. + +Please note that the CM8x38 DAC doesn't support continuous playback +rate but only fixed rates: 5512, 8000, 11025, 16000, 22050, 32000, +44100 and 48000 Hz. + +The rear output can be heard only when "Four Channel Mode" switch is +disabled. Otherwise no signal will be routed to the rear speakers. +As default it's turned on. + +*** WARNING *** +When "Four Channel Mode" switch is off, the output from rear speakers +will be FULL VOLUME regardless of Master and PCM volumes. +This might damage your audio equipment. Please disconnect speakers +before your turn off this switch. +*** WARNING *** + +[ Well.. I once got the output with correct volume (i.e. same with the + front one) and was so excited. It was even with "Four Channel" bit + on and "double DAC" mode. Actually I could hear separate 4 channels + from front and rear speakers! But.. after reboot, all was gone. + It's a very pity that I didn't save the register dump at that + time.. Maybe there is an unknown register to achieve this... ] + +If your card has an extra output jack for the rear output, the rear +playback should be routed there as default. If not, there is a +control switch in the driver "Line-In As Rear", which you can change +via alsamixer or somewhat else. When this switch is on, line-in jack +is used as rear output. + +There are two more controls regarding to the rear output. +The "Exchange DAC" switch is used to exchange front and rear playback +routes, i.e. the 2nd DAC is output from front output. + + +4/6 Multi-Channel Playback +-------------------------- + +The recent CM8738 chips support for the 4/6 multi-channel playback +function. This is useful especially for AC3 decoding. + +When the multi-channel is supported, the driver name has a suffix +"-MC" such like "CMI8738-MC6". You can check this name from +/proc/asound/cards. + +When the 4/6-ch output is enabled, the second DAC accepts up to 6 (or +4) channels. While the dual DAC supports two different rates or +formats, the 4/6-ch playback supports only the same condition for all +channels. Since the multi-channel playback mode uses both DACs, you +cannot operate with full-duplex. + +The 4.0 and 5.1 modes are defined as the pcm "surround40" and "surround51" +in alsa-lib. For example, you can play a WAV file with 6 channels like + + % aplay -Dsurround51 sixchannels.wav + +For programmin the 4/6 channel playback, you need to specify the PCM +channels as you like and set the format S16LE. For example, for playback +with 4 channels, + + snd_pcm_hw_params_set_access(pcm, hw, SND_PCM_ACCESS_RW_INTERLEAVED); + // or mmap if you like + snd_pcm_hw_params_set_format(pcm, hw, SND_PCM_FORMAT_S16_LE); + snd_pcm_hw_params_set_channels(pcm, hw, 4); + +and use the interleaved 4 channel data. + +There are some control switchs affecting to the speaker connections: + +"Line-In As Rear" - As mentioned above, the line-in jack is used + for the rear (3th and 4th channels) output. +"Line-In As Bass" - The line-in jack is used for the bass (5th + and 6th channels) output. +"Mic As Center/LFE" - The mic jack is used for the bass output. + If this switch is on, you cannot use a microphone as a capture + source, of course. + + +Digital I/O +----------- + +The CM8x38 provides the excellent SPDIF capability with very chip +price (yes, that's the reason I bought the card :) + +The SPDIF playback and capture are done via the third PCM device +(hw:0,2). Usually this is assigned to the PCM device "spdif". +The available rates are 44100 and 48000 Hz. +For playback with aplay, you can run like below: + + % aplay -Dhw:0,2 foo.wav + +or + + % aplay -Dspdif foo.wav + +24bit format is also supported experimentally. + +The playback and capture over SPDIF use normal DAC and ADC, +respectively, so you cannot playback both analog and digital streams +simultaneously. + +To enable SPDIF output, you need to turn on "IEC958 Output Switch" +control via mixer or alsactl. Then you'll see the red light on from +the card so you know that's working obviously :) +The SPDIF input is always enabled, so you can hear SPDIF input data +from line-out with "IEC958 In Monitor" switch at any time (see +below). + +You can play via SPDIF even with the first device (hw:0,0), +but SPDIF is enabled only when the proper format (S16LE), sample rate +(441100 or 48000) and channels (2) are used. Otherwise it's turned +off. (Also don't forget to turn on "IEC958 Output Switch", too.) + + +Additionally there are relevant control switches: + +"IEC958 Mix Analog" - Mix analog PCM playback and FM-OPL/3 streams and + output through SPDIF. This switch appears only on old chip + models (CM8738 033 and 037). + Note: without this control you can output PCM to SPDIF. + This is "mixing" of streams, so e.g. it's not for AC3 output + (see the next section). + +"IEC958 In Select" - Select SPDIF input, the internal CD-in (false) + and the external input (true). + +"IEC958 Loop" - SPDIF input data is loop back into SPDIF + output (aka bypass) + +"IEC958 Copyright" - Set the copyright bit. + +"IEC958 5V" - Select 0.5V (coax) or 5V (optical) interface. + On some cards this doesn't work and you need to change the + configuration with hardware dip-switch. + +"IEC958 In Monitor" - SPDIF input is routed to DAC. + +"IEC958 In Phase Inverse" - Set SPDIF input format as inverse. + [FIXME: this doesn't work on all chips..] + +"IEC958 In Valid" - Set input validity flag detection. + +Note: When "PCM Playback Switch" is on, you'll hear the digital output +stream through analog line-out. + + +The AC3 (RAW DIGITAL) OUTPUT +---------------------------- + +The driver supports raw digital (typically AC3) i/o over SPDIF. This +can be toggled via IEC958 playback control, but usually you need to +access it via alsa-lib. See alsa-lib documents for more details. + +On the raw digital mode, the "PCM Playback Switch" is automatically +turned off so that non-audio data is heard from the analog line-out. +Similarly the following switches are off: "IEC958 Mix Analog" and +"IEC958 Loop". The switches are resumed after closing the SPDIF PCM +device automatically to the previous state. + +On the model 033, AC3 is implemented by the software conversion in +the alsa-lib. If you need to bypass the software conversion of IEC958 +subframes, pass the "soft_ac3=0" module option. This doesn't matter +on the newer models. + + +ANALOG MIXER INTERFACE +---------------------- + +The mixer interface on CM8x38 is similar to SB16. +There are Master, PCM, Synth, CD, Line, Mic and PC Speaker playback +volumes. Synth, CD, Line and Mic have playback and capture switches, +too, as well as SB16. + +In addition to the standard SB mixer, CM8x38 provides more functions. +- PCM playback switch +- PCM capture switch (to capture the data sent to DAC) +- Mic Boost switch +- Mic capture volume +- Aux playback volume/switch and capture switch +- 3D control switch + + +MIDI CONTROLLER +--------------- + +The MPU401-UART interface is enabled as default only for the first +(CMIPCI) card. You need to set module option "midi_port" properly +for the 2nd (CMIPCI) card. + +There is _no_ hardware wavetable function on this chip (except for +OPL3 synth below). +What's said as MIDI synth on Windows is a software synthesizer +emulation. On Linux use TiMidity or other softsynth program for +playing MIDI music. + + +FM OPL/3 Synth +-------------- + +The FM OPL/3 is also enabled as default only for the first card. +Set "fm_port" module option for more cards. + +The output quality of FM OPL/3 is, however, very weird. +I don't know why.. + + +Joystick and Modem +------------------ + +The joystick and modem should be available by enabling the control +switch "Joystick" and "Modem" respectively. But I myself have never +tested them yet. + + +Debugging Information +--------------------- + +The registers are shown in /proc/asound/cardX/cmipci. If you have any +problem (especially unexpected behavior of mixer), please attach the +output of this proc file together with the bug report. |