summaryrefslogtreecommitdiff
path: root/Documentation/driver-api
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2017-02-22 18:51:29 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2017-02-22 18:51:29 -0800
commitc1aac62f36c1e37ee81c9e09ee9ee733eef05dcb (patch)
treeb400b92c44faf7da37d37138145e895a55eaa4cc /Documentation/driver-api
parentfd7e9a88348472521d999434ee02f25735c7dadf (diff)
parentbd8562626c8e170691d6457fe4e8dfb45607a48d (diff)
Merge tag 'docs-4.11' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet: "A slightly quieter cycle for documentation this time around. Three more DocBook template files have been converted to RST; only 21 to go. There are various build improvements and the usual array of documentation improvements and fixes" * tag 'docs-4.11' of git://git.lwn.net/linux: (44 commits) docs / driver-api: Fix structure references in device_link.rst PM / docs: Fix structure references in device.rst Add a target to check broken external links in the Documentation Documentation: Fix linux-api list typo Documentation: DocBook/Makefile comment typo Improve sparse documentation Documentation: make Makefile.sphinx no-ops quieter Documentation: DMA-ISA-LPC.txt Documentation: input: fix path to input code definitions docs: Remove the copyright year from conf.py docs: Fix a warning in the Korean HOWTO.rst translation PM / sleep / docs: Convert PM notifiers document to reST PM / core / docs: Convert sleep states API document to reST PM / core: Update kerneldoc comments in pm.h doc-rst: Fix recursive make invocation from macros doc-rst: Delete output of failed dot-SVG conversion doc-rst: Break shell command sequences on failure Documentation/sphinx: make targets independent of Sphinx work for HAVE_SPHINX=0 doc-rst: fixed cleandoc target when used with O=dir Documentation/sphinx: prevent generation of .pyc files in the source tree ...
Diffstat (limited to 'Documentation/driver-api')
-rw-r--r--Documentation/driver-api/device-io.rst201
-rw-r--r--Documentation/driver-api/device_link.rst18
-rw-r--r--Documentation/driver-api/iio/buffers.rst125
-rw-r--r--Documentation/driver-api/iio/core.rst182
-rw-r--r--Documentation/driver-api/iio/index.rst17
-rw-r--r--Documentation/driver-api/iio/intro.rst33
-rw-r--r--Documentation/driver-api/iio/triggered-buffers.rst69
-rw-r--r--Documentation/driver-api/iio/triggers.rst80
-rw-r--r--Documentation/driver-api/index.rst4
-rw-r--r--Documentation/driver-api/pm/conf.py10
-rw-r--r--Documentation/driver-api/pm/devices.rst736
-rw-r--r--Documentation/driver-api/pm/index.rst16
-rw-r--r--Documentation/driver-api/pm/notifiers.rst70
-rw-r--r--Documentation/driver-api/pm/types.rst5
-rw-r--r--Documentation/driver-api/regulator.rst170
15 files changed, 1728 insertions, 8 deletions
diff --git a/Documentation/driver-api/device-io.rst b/Documentation/driver-api/device-io.rst
new file mode 100644
index 000000000000..b00b23903078
--- /dev/null
+++ b/Documentation/driver-api/device-io.rst
@@ -0,0 +1,201 @@
+.. Copyright 2001 Matthew Wilcox
+..
+.. This documentation is free software; you can redistribute
+.. it and/or modify it under the terms of the GNU General Public
+.. License as published by the Free Software Foundation; either
+.. version 2 of the License, or (at your option) any later
+.. version.
+
+===============================
+Bus-Independent Device Accesses
+===============================
+
+:Author: Matthew Wilcox
+:Author: Alan Cox
+
+Introduction
+============
+
+Linux provides an API which abstracts performing IO across all busses
+and devices, allowing device drivers to be written independently of bus
+type.
+
+Memory Mapped IO
+================
+
+Getting Access to the Device
+----------------------------
+
+The most widely supported form of IO is memory mapped IO. That is, a
+part of the CPU's address space is interpreted not as accesses to
+memory, but as accesses to a device. Some architectures define devices
+to be at a fixed address, but most have some method of discovering
+devices. The PCI bus walk is a good example of such a scheme. This
+document does not cover how to receive such an address, but assumes you
+are starting with one. Physical addresses are of type unsigned long.
+
+This address should not be used directly. Instead, to get an address
+suitable for passing to the accessor functions described below, you
+should call :c:func:`ioremap()`. An address suitable for accessing
+the device will be returned to you.
+
+After you've finished using the device (say, in your module's exit
+routine), call :c:func:`iounmap()` in order to return the address
+space to the kernel. Most architectures allocate new address space each
+time you call :c:func:`ioremap()`, and they can run out unless you
+call :c:func:`iounmap()`.
+
+Accessing the device
+--------------------
+
+The part of the interface most used by drivers is reading and writing
+memory-mapped registers on the device. Linux provides interfaces to read
+and write 8-bit, 16-bit, 32-bit and 64-bit quantities. Due to a
+historical accident, these are named byte, word, long and quad accesses.
+Both read and write accesses are supported; there is no prefetch support
+at this time.
+
+The functions are named readb(), readw(), readl(), readq(),
+readb_relaxed(), readw_relaxed(), readl_relaxed(), readq_relaxed(),
+writeb(), writew(), writel() and writeq().
+
+Some devices (such as framebuffers) would like to use larger transfers than
+8 bytes at a time. For these devices, the :c:func:`memcpy_toio()`,
+:c:func:`memcpy_fromio()` and :c:func:`memset_io()` functions are
+provided. Do not use memset or memcpy on IO addresses; they are not
+guaranteed to copy data in order.
+
+The read and write functions are defined to be ordered. That is the
+compiler is not permitted to reorder the I/O sequence. When the ordering
+can be compiler optimised, you can use __readb() and friends to
+indicate the relaxed ordering. Use this with care.
+
+While the basic functions are defined to be synchronous with respect to
+each other and ordered with respect to each other the busses the devices
+sit on may themselves have asynchronicity. In particular many authors
+are burned by the fact that PCI bus writes are posted asynchronously. A
+driver author must issue a read from the same device to ensure that
+writes have occurred in the specific cases the author cares. This kind
+of property cannot be hidden from driver writers in the API. In some
+cases, the read used to flush the device may be expected to fail (if the
+card is resetting, for example). In that case, the read should be done
+from config space, which is guaranteed to soft-fail if the card doesn't
+respond.
+
+The following is an example of flushing a write to a device when the
+driver would like to ensure the write's effects are visible prior to
+continuing execution::
+
+ static inline void
+ qla1280_disable_intrs(struct scsi_qla_host *ha)
+ {
+ struct device_reg *reg;
+
+ reg = ha->iobase;
+ /* disable risc and host interrupts */
+ WRT_REG_WORD(&reg->ictrl, 0);
+ /*
+ * The following read will ensure that the above write
+ * has been received by the device before we return from this
+ * function.
+ */
+ RD_REG_WORD(&reg->ictrl);
+ ha->flags.ints_enabled = 0;
+ }
+
+In addition to write posting, on some large multiprocessing systems
+(e.g. SGI Challenge, Origin and Altix machines) posted writes won't be
+strongly ordered coming from different CPUs. Thus it's important to
+properly protect parts of your driver that do memory-mapped writes with
+locks and use the :c:func:`mmiowb()` to make sure they arrive in the
+order intended. Issuing a regular readX() will also ensure write ordering,
+but should only be used when the
+driver has to be sure that the write has actually arrived at the device
+(not that it's simply ordered with respect to other writes), since a
+full readX() is a relatively expensive operation.
+
+Generally, one should use :c:func:`mmiowb()` prior to releasing a spinlock
+that protects regions using :c:func:`writeb()` or similar functions that
+aren't surrounded by readb() calls, which will ensure ordering
+and flushing. The following pseudocode illustrates what might occur if
+write ordering isn't guaranteed via :c:func:`mmiowb()` or one of the
+readX() functions::
+
+ CPU A: spin_lock_irqsave(&dev_lock, flags)
+ CPU A: ...
+ CPU A: writel(newval, ring_ptr);
+ CPU A: spin_unlock_irqrestore(&dev_lock, flags)
+ ...
+ CPU B: spin_lock_irqsave(&dev_lock, flags)
+ CPU B: writel(newval2, ring_ptr);
+ CPU B: ...
+ CPU B: spin_unlock_irqrestore(&dev_lock, flags)
+
+In the case above, newval2 could be written to ring_ptr before newval.
+Fixing it is easy though::
+
+ CPU A: spin_lock_irqsave(&dev_lock, flags)
+ CPU A: ...
+ CPU A: writel(newval, ring_ptr);
+ CPU A: mmiowb(); /* ensure no other writes beat us to the device */
+ CPU A: spin_unlock_irqrestore(&dev_lock, flags)
+ ...
+ CPU B: spin_lock_irqsave(&dev_lock, flags)
+ CPU B: writel(newval2, ring_ptr);
+ CPU B: ...
+ CPU B: mmiowb();
+ CPU B: spin_unlock_irqrestore(&dev_lock, flags)
+
+See tg3.c for a real world example of how to use :c:func:`mmiowb()`
+
+PCI ordering rules also guarantee that PIO read responses arrive after any
+outstanding DMA writes from that bus, since for some devices the result of
+a readb() call may signal to the driver that a DMA transaction is
+complete. In many cases, however, the driver may want to indicate that the
+next readb() call has no relation to any previous DMA writes
+performed by the device. The driver can use readb_relaxed() for
+these cases, although only some platforms will honor the relaxed
+semantics. Using the relaxed read functions will provide significant
+performance benefits on platforms that support it. The qla2xxx driver
+provides examples of how to use readX_relaxed(). In many cases, a majority
+of the driver's readX() calls can safely be converted to readX_relaxed()
+calls, since only a few will indicate or depend on DMA completion.
+
+Port Space Accesses
+===================
+
+Port Space Explained
+--------------------
+
+Another form of IO commonly supported is Port Space. This is a range of
+addresses separate to the normal memory address space. Access to these
+addresses is generally not as fast as accesses to the memory mapped
+addresses, and it also has a potentially smaller address space.
+
+Unlike memory mapped IO, no preparation is required to access port
+space.
+
+Accessing Port Space
+--------------------
+
+Accesses to this space are provided through a set of functions which
+allow 8-bit, 16-bit and 32-bit accesses; also known as byte, word and
+long. These functions are :c:func:`inb()`, :c:func:`inw()`,
+:c:func:`inl()`, :c:func:`outb()`, :c:func:`outw()` and
+:c:func:`outl()`.
+
+Some variants are provided for these functions. Some devices require
+that accesses to their ports are slowed down. This functionality is
+provided by appending a ``_p`` to the end of the function.
+There are also equivalents to memcpy. The :c:func:`ins()` and
+:c:func:`outs()` functions copy bytes, words or longs to the given
+port.
+
+Public Functions Provided
+=========================
+
+.. kernel-doc:: arch/x86/include/asm/io.h
+ :internal:
+
+.. kernel-doc:: lib/pci_iomap.c
+ :export:
diff --git a/Documentation/driver-api/device_link.rst b/Documentation/driver-api/device_link.rst
index 5f5713448703..70e328e16aad 100644
--- a/Documentation/driver-api/device_link.rst
+++ b/Documentation/driver-api/device_link.rst
@@ -1,3 +1,6 @@
+.. |struct dev_pm_domain| replace:: :c:type:`struct dev_pm_domain <dev_pm_domain>`
+.. |struct generic_pm_domain| replace:: :c:type:`struct generic_pm_domain <generic_pm_domain>`
+
============
Device links
============
@@ -120,12 +123,11 @@ Examples
is the same as if the MMU was the parent of the master device.
The fact that both devices share the same power domain would normally
- suggest usage of a :c:type:`struct dev_pm_domain` or :c:type:`struct
- generic_pm_domain`, however these are not independent devices that
- happen to share a power switch, but rather the MMU device serves the
- busmaster device and is useless without it. A device link creates a
- synthetic hierarchical relationship between the devices and is thus
- more apt.
+ suggest usage of a |struct dev_pm_domain| or |struct generic_pm_domain|,
+ however these are not independent devices that happen to share a power
+ switch, but rather the MMU device serves the busmaster device and is
+ useless without it. A device link creates a synthetic hierarchical
+ relationship between the devices and is thus more apt.
* A Thunderbolt host controller comprises a number of PCIe hotplug ports
and an NHI device to manage the PCIe switch. On resume from system sleep,
@@ -157,7 +159,7 @@ Examples
Alternatives
============
-* A :c:type:`struct dev_pm_domain` can be used to override the bus,
+* A |struct dev_pm_domain| can be used to override the bus,
class or device type callbacks. It is intended for devices sharing
a single on/off switch, however it does not guarantee a specific
suspend/resume ordering, this needs to be implemented separately.
@@ -166,7 +168,7 @@ Alternatives
suspended. Furthermore it cannot be used to enforce a specific shutdown
ordering or a driver presence dependency.
-* A :c:type:`struct generic_pm_domain` is a lot more heavyweight than a
+* A |struct generic_pm_domain| is a lot more heavyweight than a
device link and does not allow for shutdown ordering or driver presence
dependencies. It also cannot be used on ACPI systems.
diff --git a/Documentation/driver-api/iio/buffers.rst b/Documentation/driver-api/iio/buffers.rst
new file mode 100644
index 000000000000..02c99a6bee18
--- /dev/null
+++ b/Documentation/driver-api/iio/buffers.rst
@@ -0,0 +1,125 @@
+=======
+Buffers
+=======
+
+* struct :c:type:`iio_buffer` — general buffer structure
+* :c:func:`iio_validate_scan_mask_onehot` — Validates that exactly one channel
+ is selected
+* :c:func:`iio_buffer_get` — Grab a reference to the buffer
+* :c:func:`iio_buffer_put` — Release the reference to the buffer
+
+The Industrial I/O core offers a way for continuous data capture based on a
+trigger source. Multiple data channels can be read at once from
+:file:`/dev/iio:device{X}` character device node, thus reducing the CPU load.
+
+IIO buffer sysfs interface
+==========================
+An IIO buffer has an associated attributes directory under
+:file:`/sys/bus/iio/iio:device{X}/buffer/*`. Here are some of the existing
+attributes:
+
+* :file:`length`, the total number of data samples (capacity) that can be
+ stored by the buffer.
+* :file:`enable`, activate buffer capture.
+
+IIO buffer setup
+================
+
+The meta information associated with a channel reading placed in a buffer is
+called a scan element . The important bits configuring scan elements are
+exposed to userspace applications via the
+:file:`/sys/bus/iio/iio:device{X}/scan_elements/*` directory. This file contains
+attributes of the following form:
+
+* :file:`enable`, used for enabling a channel. If and only if its attribute
+ is non *zero*, then a triggered capture will contain data samples for this
+ channel.
+* :file:`type`, description of the scan element data storage within the buffer
+ and hence the form in which it is read from user space.
+ Format is [be|le]:[s|u]bits/storagebitsXrepeat[>>shift] .
+ * *be* or *le*, specifies big or little endian.
+ * *s* or *u*, specifies if signed (2's complement) or unsigned.
+ * *bits*, is the number of valid data bits.
+ * *storagebits*, is the number of bits (after padding) that it occupies in the
+ buffer.
+ * *shift*, if specified, is the shift that needs to be applied prior to
+ masking out unused bits.
+ * *repeat*, specifies the number of bits/storagebits repetitions. When the
+ repeat element is 0 or 1, then the repeat value is omitted.
+
+For example, a driver for a 3-axis accelerometer with 12 bit resolution where
+data is stored in two 8-bits registers as follows::
+
+ 7 6 5 4 3 2 1 0
+ +---+---+---+---+---+---+---+---+
+ |D3 |D2 |D1 |D0 | X | X | X | X | (LOW byte, address 0x06)
+ +---+---+---+---+---+---+---+---+
+
+ 7 6 5 4 3 2 1 0
+ +---+---+---+---+---+---+---+---+
+ |D11|D10|D9 |D8 |D7 |D6 |D5 |D4 | (HIGH byte, address 0x07)
+ +---+---+---+---+---+---+---+---+
+
+will have the following scan element type for each axis::
+
+ $ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_y_type
+ le:s12/16>>4
+
+A user space application will interpret data samples read from the buffer as
+two byte little endian signed data, that needs a 4 bits right shift before
+masking out the 12 valid bits of data.
+
+For implementing buffer support a driver should initialize the following
+fields in iio_chan_spec definition::
+
+ struct iio_chan_spec {
+ /* other members */
+ int scan_index
+ struct {
+ char sign;
+ u8 realbits;
+ u8 storagebits;
+ u8 shift;
+ u8 repeat;
+ enum iio_endian endianness;
+ } scan_type;
+ };
+
+The driver implementing the accelerometer described above will have the
+following channel definition::
+
+ struct struct iio_chan_spec accel_channels[] = {
+ {
+ .type = IIO_ACCEL,
+ .modified = 1,
+ .channel2 = IIO_MOD_X,
+ /* other stuff here */
+ .scan_index = 0,
+ .scan_type = {
+ .sign = 's',
+ .realbits = 12,
+ .storagebits = 16,
+ .shift = 4,
+ .endianness = IIO_LE,
+ },
+ }
+ /* similar for Y (with channel2 = IIO_MOD_Y, scan_index = 1)
+ * and Z (with channel2 = IIO_MOD_Z, scan_index = 2) axis
+ */
+ }
+
+Here **scan_index** defines the order in which the enabled channels are placed
+inside the buffer. Channels with a lower **scan_index** will be placed before
+channels with a higher index. Each channel needs to have a unique
+**scan_index**.
+
+Setting **scan_index** to -1 can be used to indicate that the specific channel
+does not support buffered capture. In this case no entries will be created for
+the channel in the scan_elements directory.
+
+More details
+============
+.. kernel-doc:: include/linux/iio/buffer.h
+.. kernel-doc:: drivers/iio/industrialio-buffer.c
+ :export:
+
diff --git a/Documentation/driver-api/iio/core.rst b/Documentation/driver-api/iio/core.rst
new file mode 100644
index 000000000000..9a34ae03b679
--- /dev/null
+++ b/Documentation/driver-api/iio/core.rst
@@ -0,0 +1,182 @@
+=============
+Core elements
+=============
+
+The Industrial I/O core offers a unified framework for writing drivers for
+many different types of embedded sensors. a standard interface to user space
+applications manipulating sensors. The implementation can be found under
+:file:`drivers/iio/industrialio-*`
+
+Industrial I/O Devices
+----------------------
+
+* struct :c:type:`iio_dev` - industrial I/O device
+* :c:func:`iio_device_alloc()` - alocate an :c:type:`iio_dev` from a driver
+* :c:func:`iio_device_free()` - free an :c:type:`iio_dev` from a driver
+* :c:func:`iio_device_register()` - register a device with the IIO subsystem
+* :c:func:`iio_device_unregister()` - unregister a device from the IIO
+ subsystem
+
+An IIO device usually corresponds to a single hardware sensor and it
+provides all the information needed by a driver handling a device.
+Let's first have a look at the functionality embedded in an IIO device
+then we will show how a device driver makes use of an IIO device.
+
+There are two ways for a user space application to interact with an IIO driver.
+
+1. :file:`/sys/bus/iio/iio:device{X}/`, this represents a hardware sensor
+ and groups together the data channels of the same chip.
+2. :file:`/dev/iio:device{X}`, character device node interface used for
+ buffered data transfer and for events information retrieval.
+
+A typical IIO driver will register itself as an :doc:`I2C <../i2c>` or
+:doc:`SPI <../spi>` driver and will create two routines, probe and remove.
+
+At probe:
+
+1. Call :c:func:`iio_device_alloc()`, which allocates memory for an IIO device.
+2. Initialize IIO device fields with driver specific information (e.g.
+ device name, device channels).
+3. Call :c:func:`iio_device_register()`, this registers the device with the
+ IIO core. After this call the device is ready to accept requests from user
+ space applications.
+
+At remove, we free the resources allocated in probe in reverse order:
+
+1. :c:func:`iio_device_unregister()`, unregister the device from the IIO core.
+2. :c:func:`iio_device_free()`, free the memory allocated for the IIO device.
+
+IIO device sysfs interface
+==========================
+
+Attributes are sysfs files used to expose chip info and also allowing
+applications to set various configuration parameters. For device with
+index X, attributes can be found under /sys/bus/iio/iio:deviceX/ directory.
+Common attributes are:
+
+* :file:`name`, description of the physical chip.
+* :file:`dev`, shows the major:minor pair associated with
+ :file:`/dev/iio:deviceX` node.
+* :file:`sampling_frequency_available`, available discrete set of sampling
+ frequency values for device.
+* Available standard attributes for IIO devices are described in the
+ :file:`Documentation/ABI/testing/sysfs-bus-iio` file in the Linux kernel
+ sources.
+
+IIO device channels
+===================
+
+struct :c:type:`iio_chan_spec` - specification of a single channel
+
+An IIO device channel is a representation of a data channel. An IIO device can
+have one or multiple channels. For example:
+
+* a thermometer sensor has one channel representing the temperature measurement.
+* a light sensor with two channels indicating the measurements in the visible
+ and infrared spectrum.
+* an accelerometer can have up to 3 channels representing acceleration on X, Y
+ and Z axes.
+
+An IIO channel is described by the struct :c:type:`iio_chan_spec`.
+A thermometer driver for the temperature sensor in the example above would
+have to describe its channel as follows::
+
+ static const struct iio_chan_spec temp_channel[] = {
+ {
+ .type = IIO_TEMP,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
+ },
+ };
+
+Channel sysfs attributes exposed to userspace are specified in the form of
+bitmasks. Depending on their shared info, attributes can be set in one of the
+following masks:
+
+* **info_mask_separate**, attributes will be specific to
+ this channel
+* **info_mask_shared_by_type**, attributes are shared by all channels of the
+ same type
+* **info_mask_shared_by_dir**, attributes are shared by all channels of the same
+ direction
+* **info_mask_shared_by_all**, attributes are shared by all channels
+
+When there are multiple data channels per channel type we have two ways to
+distinguish between them:
+
+* set **.modified** field of :c:type:`iio_chan_spec` to 1. Modifiers are
+ specified using **.channel2** field of the same :c:type:`iio_chan_spec`
+ structure and are used to indicate a physically unique characteristic of the
+ channel such as its direction or spectral response. For example, a light
+ sensor can have two channels, one for infrared light and one for both
+ infrared and visible light.
+* set **.indexed** field of :c:type:`iio_chan_spec` to 1. In this case the
+ channel is simply another instance with an index specified by the **.channel**
+ field.
+
+Here is how we can make use of the channel's modifiers::
+
+ static const struct iio_chan_spec light_channels[] = {
+ {
+ .type = IIO_INTENSITY,
+ .modified = 1,
+ .channel2 = IIO_MOD_LIGHT_IR,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+ },
+ {
+ .type = IIO_INTENSITY,
+ .modified = 1,
+ .channel2 = IIO_MOD_LIGHT_BOTH,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+ },
+ {
+ .type = IIO_LIGHT,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
+ .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+ },
+ }
+
+This channel's definition will generate two separate sysfs files for raw data
+retrieval:
+
+* :file:`/sys/bus/iio/iio:device{X}/in_intensity_ir_raw`
+* :file:`/sys/bus/iio/iio:device{X}/in_intensity_both_raw`
+
+one file for processed data:
+
+* :file:`/sys/bus/iio/iio:device{X}/in_illuminance_input`
+
+and one shared sysfs file for sampling frequency:
+
+* :file:`/sys/bus/iio/iio:device{X}/sampling_frequency`.
+
+Here is how we can make use of the channel's indexing::
+
+ static const struct iio_chan_spec light_channels[] = {
+ {
+ .type = IIO_VOLTAGE,
+ .indexed = 1,
+ .channel = 0,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ },
+ {
+ .type = IIO_VOLTAGE,
+ .indexed = 1,
+ .channel = 1,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ },
+ }
+
+This will generate two separate attributes files for raw data retrieval:
+
+* :file:`/sys/bus/iio/devices/iio:device{X}/in_voltage0_raw`, representing
+ voltage measurement for channel 0.
+* :file:`/sys/bus/iio/devices/iio:device{X}/in_voltage1_raw`, representing
+ voltage measurement for channel 1.
+
+More details
+============
+.. kernel-doc:: include/linux/iio/iio.h
+.. kernel-doc:: drivers/iio/industrialio-core.c
+ :export:
diff --git a/Documentation/driver-api/iio/index.rst b/Documentation/driver-api/iio/index.rst
new file mode 100644
index 000000000000..e5c3922d1b6f
--- /dev/null
+++ b/Documentation/driver-api/iio/index.rst
@@ -0,0 +1,17 @@
+.. include:: <isonum.txt>
+
+Industrial I/O
+==============
+
+**Copyright** |copy| 2015 Intel Corporation
+
+Contents:
+
+.. toctree::
+ :maxdepth: 2
+
+ intro
+ core
+ buffers
+ triggers
+ triggered-buffers
diff --git a/Documentation/driver-api/iio/intro.rst b/Documentation/driver-api/iio/intro.rst
new file mode 100644
index 000000000000..3653fbd57069
--- /dev/null
+++ b/Documentation/driver-api/iio/intro.rst
@@ -0,0 +1,33 @@
+.. include:: <isonum.txt>
+
+============
+Introduction
+============
+
+The main purpose of the Industrial I/O subsystem (IIO) is to provide support
+for devices that in some sense perform either
+analog-to-digital conversion (ADC) or digital-to-analog conversion (DAC)
+or both. The aim is to fill the gap between the somewhat similar hwmon and
+:doc:`input <../input>` subsystems. Hwmon is directed at low sample rate
+sensors used to monitor and control the system itself, like fan speed control
+or temperature measurement. :doc:`Input <../input>` is, as its name suggests,
+focused on human interaction input devices (keyboard, mouse, touchscreen).
+In some cases there is considerable overlap between these and IIO.
+
+Devices that fall into this category include:
+
+* analog to digital converters (ADCs)
+* accelerometers
+* capacitance to digital converters (CDCs)
+* digital to analog converters (DACs)
+* gyroscopes
+* inertial measurement units (IMUs)
+* color and light sensors
+* magnetometers
+* pressure sensors
+* proximity sensors
+* temperature sensors
+
+Usually these sensors are connected via :doc:`SPI <../spi>` or
+:doc:`I2C <../i2c>`. A common use case of the sensors devices is to have
+combined functionality (e.g. light plus proximity sensor).
diff --git a/Documentation/driver-api/iio/triggered-buffers.rst b/Documentation/driver-api/iio/triggered-buffers.rst
new file mode 100644
index 000000000000..0db12660cc90
--- /dev/null
+++ b/Documentation/driver-api/iio/triggered-buffers.rst
@@ -0,0 +1,69 @@
+=================
+Triggered Buffers
+=================
+
+Now that we know what buffers and triggers are let's see how they work together.
+
+IIO triggered buffer setup
+==========================
+
+* :c:func:`iio_triggered_buffer_setup` — Setup triggered buffer and pollfunc
+* :c:func:`iio_triggered_buffer_cleanup` — Free resources allocated by
+ :c:func:`iio_triggered_buffer_setup`
+* struct :c:type:`iio_buffer_setup_ops` — buffer setup related callbacks
+
+A typical triggered buffer setup looks like this::
+
+ const struct iio_buffer_setup_ops sensor_buffer_setup_ops = {
+ .preenable = sensor_buffer_preenable,
+ .postenable = sensor_buffer_postenable,
+ .postdisable = sensor_buffer_postdisable,
+ .predisable = sensor_buffer_predisable,
+ };
+
+ irqreturn_t sensor_iio_pollfunc(int irq, void *p)
+ {
+ pf->timestamp = iio_get_time_ns((struct indio_dev *)p);
+ return IRQ_WAKE_THREAD;
+ }
+
+ irqreturn_t sensor_trigger_handler(int irq, void *p)
+ {
+ u16 buf[8];
+ int i = 0;
+
+ /* read data for each active channel */
+ for_each_set_bit(bit, active_scan_mask, masklength)
+ buf[i++] = sensor_get_data(bit)
+
+ iio_push_to_buffers_with_timestamp(indio_dev, buf, timestamp);
+
+ iio_trigger_notify_done(trigger);
+ return IRQ_HANDLED;
+ }
+
+ /* setup triggered buffer, usually in probe function */
+ iio_triggered_buffer_setup(indio_dev, sensor_iio_polfunc,
+ sensor_trigger_handler,
+ sensor_buffer_setup_ops);
+
+The important things to notice here are:
+
+* :c:type:`iio_buffer_setup_ops`, the buffer setup functions to be called at
+ predefined points in the buffer configuration sequence (e.g. before enable,
+ after disable). If not specified, the IIO core uses the default
+ iio_triggered_buffer_setup_ops.
+* **sensor_iio_pollfunc**, the function that will be used as top half of poll
+ function. It should do as little processing as possible, because it runs in
+ interrupt context. The most common operation is recording of the current
+ timestamp and for this reason one can use the IIO core defined
+ :c:func:`iio_pollfunc_store_time` function.
+* **sensor_trigger_handler**, the function that will be used as bottom half of
+ the poll function. This runs in the context of a kernel thread and all the
+ processing takes place here. It usually reads data from the device and
+ stores it in the internal buffer together with the timestamp recorded in the
+ top half.
+
+More details
+============
+.. kernel-doc:: drivers/iio/buffer/industrialio-triggered-buffer.c
diff --git a/Documentation/driver-api/iio/triggers.rst b/Documentation/driver-api/iio/triggers.rst
new file mode 100644
index 000000000000..f89d37e7dd82
--- /dev/null
+++ b/Documentation/driver-api/iio/triggers.rst
@@ -0,0 +1,80 @@
+========
+Triggers
+========
+
+* struct :c:type:`iio_trigger` — industrial I/O trigger device
+* :c:func:`devm_iio_trigger_alloc` — Resource-managed iio_trigger_alloc
+* :c:func:`devm_iio_trigger_free` — Resource-managed iio_trigger_free
+* :c:func:`devm_iio_trigger_register` — Resource-managed iio_trigger_register
+* :c:func:`devm_iio_trigger_unregister` — Resource-managed
+ iio_trigger_unregister
+* :c:func:`iio_trigger_validate_own_device` — Check if a trigger and IIO
+ device belong to the same device
+
+In many situations it is useful for a driver to be able to capture data based
+on some external event (trigger) as opposed to periodically polling for data.
+An IIO trigger can be provided by a device driver that also has an IIO device
+based on hardware generated events (e.g. data ready or threshold exceeded) or
+provided by a separate driver from an independent interrupt source (e.g. GPIO
+line connected to some external system, timer interrupt or user space writing
+a specific file in sysfs). A trigger may initiate data capture for a number of
+sensors and also it may be completely unrelated to the sensor itself.
+
+IIO trigger sysfs interface
+===========================
+
+There are two locations in sysfs related to triggers:
+
+* :file:`/sys/bus/iio/devices/trigger{Y}/*`, this file is created once an
+ IIO trigger is registered with the IIO core and corresponds to trigger
+ with index Y.
+ Because triggers can be very different depending on type there are few
+ standard attributes that we can describe here:
+
+ * :file:`name`, trigger name that can be later used for association with a
+ device.
+ * :file:`sampling_frequency`, some timer based triggers use this attribute to
+ specify the frequency for trigger calls.
+
+* :file:`/sys/bus/iio/devices/iio:device{X}/trigger/*`, this directory is
+ created once the device supports a triggered buffer. We can associate a
+ trigger with our device by writing the trigger's name in the
+ :file:`current_trigger` file.
+
+IIO trigger setup
+=================
+
+Let's see a simple example of how to setup a trigger to be used by a driver::
+
+ struct iio_trigger_ops trigger_ops = {
+ .set_trigger_state = sample_trigger_state,
+ .validate_device = sample_validate_device,
+ }
+
+ struct iio_trigger *trig;
+
+ /* first, allocate memory for our trigger */
+ trig = iio_trigger_alloc(dev, "trig-%s-%d", name, idx);
+
+ /* setup trigger operations field */
+ trig->ops = &trigger_ops;
+
+ /* now register the trigger with the IIO core */
+ iio_trigger_register(trig);
+
+IIO trigger ops
+===============
+
+* struct :c:type:`iio_trigger_ops` — operations structure for an iio_trigger.
+
+Notice that a trigger has a set of operations attached:
+
+* :file:`set_trigger_state`, switch the trigger on/off on demand.
+* :file:`validate_device`, function to validate the device when the current
+ trigger gets changed.
+
+More details
+============
+.. kernel-doc:: include/linux/iio/trigger.h
+.. kernel-doc:: drivers/iio/industrialio-trigger.c
+ :export:
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
index dbd34c9c1d93..60db00d1532b 100644
--- a/Documentation/driver-api/index.rst
+++ b/Documentation/driver-api/index.rst
@@ -16,11 +16,15 @@ available subsections can be seen below.
basics
infrastructure
+ pm/index
+ device-io
dma-buf
device_link
message-based
sound
frame-buffer
+ regulator
+ iio/index
input
usb
spi
diff --git a/Documentation/driver-api/pm/conf.py b/Documentation/driver-api/pm/conf.py
new file mode 100644
index 000000000000..a89fac11272f
--- /dev/null
+++ b/Documentation/driver-api/pm/conf.py
@@ -0,0 +1,10 @@
+# -*- coding: utf-8; mode: python -*-
+
+project = "Device Power Management"
+
+tags.add("subproject")
+
+latex_documents = [
+ ('index', 'pm.tex', project,
+ 'The kernel development community', 'manual'),
+]
diff --git a/Documentation/driver-api/pm/devices.rst b/Documentation/driver-api/pm/devices.rst
new file mode 100644
index 000000000000..bedd32388dac
--- /dev/null
+++ b/Documentation/driver-api/pm/devices.rst
@@ -0,0 +1,736 @@
+.. |struct dev_pm_ops| replace:: :c:type:`struct dev_pm_ops <dev_pm_ops>`
+.. |struct dev_pm_domain| replace:: :c:type:`struct dev_pm_domain <dev_pm_domain>`
+.. |struct bus_type| replace:: :c:type:`struct bus_type <bus_type>`
+.. |struct device_type| replace:: :c:type:`struct device_type <device_type>`
+.. |struct class| replace:: :c:type:`struct class <class>`
+.. |struct wakeup_source| replace:: :c:type:`struct wakeup_source <wakeup_source>`
+.. |struct device| replace:: :c:type:`struct device <device>`
+
+==============================
+Device Power Management Basics
+==============================
+
+::
+
+ Copyright (c) 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
+ Copyright (c) 2010 Alan Stern <stern@rowland.harvard.edu>
+ Copyright (c) 2016 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+
+Most of the code in Linux is device drivers, so most of the Linux power
+management (PM) code is also driver-specific. Most drivers will do very
+little; others, especially for platforms with small batteries (like cell
+phones), will do a lot.
+
+This writeup gives an overview of how drivers interact with system-wide
+power management goals, emphasizing the models and interfaces that are
+shared by everything that hooks up to the driver model core. Read it as
+background for the domain-specific work you'd do with any specific driver.
+
+
+Two Models for Device Power Management
+======================================
+
+Drivers will use one or both of these models to put devices into low-power
+states:
+
+ System Sleep model:
+
+ Drivers can enter low-power states as part of entering system-wide
+ low-power states like "suspend" (also known as "suspend-to-RAM"), or
+ (mostly for systems with disks) "hibernation" (also known as
+ "suspend-to-disk").
+
+ This is something that device, bus, and class drivers collaborate on
+ by implementing various role-specific suspend and resume methods to
+ cleanly power down hardware and software subsystems, then reactivate
+ them without loss of data.
+
+ Some drivers can manage hardware wakeup events, which make the system
+ leave the low-power state. This feature may be enabled or disabled
+ using the relevant :file:`/sys/devices/.../power/wakeup` file (for
+ Ethernet drivers the ioctl interface used by ethtool may also be used
+ for this purpose); enabling it may cost some power usage, but let the
+ whole system enter low-power states more often.
+
+ Runtime Power Management model:
+
+ Devices may also be put into low-power states while the system is
+ running, independently of other power management activity in principle.
+ However, devices are not generally independent of each other (for
+ example, a parent device cannot be suspended unless all of its child
+ devices have been suspended). Moreover, depending on the bus type the
+ device is on, it may be necessary to carry out some bus-specific
+ operations on the device for this purpose. Devices put into low power
+ states at run time may require special handling during system-wide power
+ transitions (suspend or hibernation).
+
+ For these reasons not only the device driver itself, but also the
+ appropriate subsystem (bus type, device type or device class) driver and
+ the PM core are involved in runtime power management. As in the system
+ sleep power management case, they need to collaborate by implementing
+ various role-specific suspend and resume methods, so that the hardware
+ is cleanly powered down and reactivated without data or service loss.
+
+There's not a lot to be said about those low-power states except that they are
+very system-specific, and often device-specific. Also, that if enough devices
+have been put into low-power states (at runtime), the effect may be very similar
+to entering some system-wide low-power state (system sleep) ... and that
+synergies exist, so that several drivers using runtime PM might put the system
+into a state where even deeper power saving options are available.
+
+Most suspended devices will have quiesced all I/O: no more DMA or IRQs (except
+for wakeup events), no more data read or written, and requests from upstream
+drivers are no longer accepted. A given bus or platform may have different
+requirements though.
+
+Examples of hardware wakeup events include an alarm from a real time clock,
+network wake-on-LAN packets, keyboard or mouse activity, and media insertion
+or removal (for PCMCIA, MMC/SD, USB, and so on).
+
+Interfaces for Entering System Sleep States
+===========================================
+
+There are programming interfaces provided for subsystems (bus type, device type,
+device class) and device drivers to allow them to participate in the power
+management of devices they are concerned with. These interfaces cover both
+system sleep and runtime power management.
+
+
+Device Power Management Operations
+----------------------------------
+
+Device power management operations, at the subsystem level as well as at the
+device driver level, are implemented by defining and populating objects of type
+|struct dev_pm_ops| defined in :file:`include/linux/pm.h`. The roles of the
+methods included in it will be explained in what follows. For now, it should be
+sufficient to remember that the last three methods are specific to runtime power
+management while the remaining ones are used during system-wide power
+transitions.
+
+There also is a deprecated "old" or "legacy" interface for power management
+operations available at least for some subsystems. This approach does not use
+|struct dev_pm_ops| objects and it is suitable only for implementing system
+sleep power management methods in a limited way. Therefore it is not described
+in this document, so please refer directly to the source code for more
+information about it.
+
+
+Subsystem-Level Methods
+-----------------------
+
+The core methods to suspend and resume devices reside in
+|struct dev_pm_ops| pointed to by the :c:member:`ops` member of
+|struct dev_pm_domain|, or by the :c:member:`pm` member of |struct bus_type|,
+|struct device_type| and |struct class|. They are mostly of interest to the
+people writing infrastructure for platforms and buses, like PCI or USB, or
+device type and device class drivers. They also are relevant to the writers of
+device drivers whose subsystems (PM domains, device types, device classes and
+bus types) don't provide all power management methods.
+
+Bus drivers implement these methods as appropriate for the hardware and the
+drivers using it; PCI works differently from USB, and so on. Not many people
+write subsystem-level drivers; most driver code is a "device driver" that builds
+on top of bus-specific framework code.
+
+For more information on these driver calls, see the description later;
+they are called in phases for every device, respecting the parent-child
+sequencing in the driver model tree.
+
+
+:file:`/sys/devices/.../power/wakeup` files
+-------------------------------------------
+
+All device objects in the driver model contain fields that control the handling
+of system wakeup events (hardware signals that can force the system out of a
+sleep state). These fields are initialized by bus or device driver code using
+:c:func:`device_set_wakeup_capable()` and :c:func:`device_set_wakeup_enable()`,
+defined in :file:`include/linux/pm_wakeup.h`.
+
+The :c:member:`power.can_wakeup` flag just records whether the device (and its
+driver) can physically support wakeup events. The
+:c:func:`device_set_wakeup_capable()` routine affects this flag. The
+:c:member:`power.wakeup` field is a pointer to an object of type
+|struct wakeup_source| used for controlling whether or not the device should use
+its system wakeup mechanism and for notifying the PM core of system wakeup
+events signaled by the device. This object is only present for wakeup-capable
+devices (i.e. devices whose :c:member:`can_wakeup` flags are set) and is created
+(or removed) by :c:func:`device_set_wakeup_capable()`.
+
+Whether or not a device is capable of issuing wakeup events is a hardware
+matter, and the kernel is responsible for keeping track of it. By contrast,
+whether or not a wakeup-capable device should issue wakeup events is a policy
+decision, and it is managed by user space through a sysfs attribute: the
+:file:`power/wakeup` file. User space can write the "enabled" or "disabled"
+strings to it to indicate whether or not, respectively, the device is supposed
+to signal system wakeup. This file is only present if the
+:c:member:`power.wakeup` object exists for the given device and is created (or
+removed) along with that object, by :c:func:`device_set_wakeup_capable()`.
+Reads from the file will return the corresponding string.
+
+The initial value in the :file:`power/wakeup` file is "disabled" for the
+majority of devices; the major exceptions are power buttons, keyboards, and
+Ethernet adapters whose WoL (wake-on-LAN) feature has been set up with ethtool.
+It should also default to "enabled" for devices that don't generate wakeup
+requests on their own but merely forward wakeup requests from one bus to another
+(like PCI Express ports).
+
+The :c:func:`device_may_wakeup()` routine returns true only if the
+:c:member:`power.wakeup` object exists and the corresponding :file:`power/wakeup`
+file contains the "enabled" string. This information is used by subsystems,
+like the PCI bus type code, to see whether or not to enable the devices' wakeup
+mechanisms. If device wakeup mechanisms are enabled or disabled directly by
+drivers, they also should use :c:func:`device_may_wakeup()` to decide what to do
+during a system sleep transition. Device drivers, however, are not expected to
+call :c:func:`device_set_wakeup_enable()` directly in any case.
+
+It ought to be noted that system wakeup is conceptually different from "remote
+wakeup" used by runtime power management, although it may be supported by the
+same physical mechanism. Remote wakeup is a feature allowing devices in
+low-power states to trigger specific interrupts to signal conditions in which
+they should be put into the full-power state. Those interrupts may or may not
+be used to signal system wakeup events, depending on the hardware design. On
+some systems it is impossible to trigger them from system sleep states. In any
+case, remote wakeup should always be enabled for runtime power management for
+all devices and drivers that support it.
+
+
+:file:`/sys/devices/.../power/control` files
+--------------------------------------------
+
+Each device in the driver model has a flag to control whether it is subject to
+runtime power management. This flag, :c:member:`runtime_auto`, is initialized
+by the bus type (or generally subsystem) code using :c:func:`pm_runtime_allow()`
+or :c:func:`pm_runtime_forbid()`; the default is to allow runtime power
+management.
+
+The setting can be adjusted by user space by writing either "on" or "auto" to
+the device's :file:`power/control` sysfs file. Writing "auto" calls
+:c:func:`pm_runtime_allow()`, setting the flag and allowing the device to be
+runtime power-managed by its driver. Writing "on" calls
+:c:func:`pm_runtime_forbid()`, clearing the flag, returning the device to full
+power if it was in a low-power state, and preventing the
+device from being runtime power-managed. User space can check the current value
+of the :c:member:`runtime_auto` flag by reading that file.
+
+The device's :c:member:`runtime_auto` flag has no effect on the handling of
+system-wide power transitions. In particular, the device can (and in the
+majority of cases should and will) be put into a low-power state during a
+system-wide transition to a sleep state even though its :c:member:`runtime_auto`
+flag is clear.
+
+For more information about the runtime power management framework, refer to
+:file:`Documentation/power/runtime_pm.txt`.
+
+
+Calling Drivers to Enter and Leave System Sleep States
+======================================================
+
+When the system goes into a sleep state, each device's driver is asked to
+suspend the device by putting it into a state compatible with the target
+system state. That's usually some version of "off", but the details are
+system-specific. Also, wakeup-enabled devices will usually stay partly
+functional in order to wake the system.
+
+When the system leaves that low-power state, the device's driver is asked to
+resume it by returning it to full power. The suspend and resume operations
+always go together, and both are multi-phase operations.
+
+For simple drivers, suspend might quiesce the device using class code
+and then turn its hardware as "off" as possible during suspend_noirq. The
+matching resume calls would then completely reinitialize the hardware
+before reactivating its class I/O queues.
+
+More power-aware drivers might prepare the devices for triggering system wakeup
+events.
+
+
+Call Sequence Guarantees
+------------------------
+
+To ensure that bridges and similar links needing to talk to a device are
+available when the device is suspended or resumed, the device hierarchy is
+walked in a bottom-up order to suspend devices. A top-down order is
+used to resume those devices.
+
+The ordering of the device hierarchy is defined by the order in which devices
+get registered: a child can never be registered, probed or resumed before
+its parent; and can't be removed or suspended after that parent.
+
+The policy is that the device hierarchy should match hardware bus topology.
+[Or at least the control bus, for devices which use multiple busses.]
+In particular, this means that a device registration may fail if the parent of
+the device is suspending (i.e. has been chosen by the PM core as the next
+device to suspend) or has already suspended, as well as after all of the other
+devices have been suspended. Device drivers must be prepared to cope with such
+situations.
+
+
+System Power Management Phases
+------------------------------
+
+Suspending or resuming the system is done in several phases. Different phases
+are used for suspend-to-idle, shallow (standby), and deep ("suspend-to-RAM")
+sleep states and the hibernation state ("suspend-to-disk"). Each phase involves
+executing callbacks for every device before the next phase begins. Not all
+buses or classes support all these callbacks and not all drivers use all the
+callbacks. The various phases always run after tasks have been frozen and
+before they are unfrozen. Furthermore, the ``*_noirq phases`` run at a time
+when IRQ handlers have been disabled (except for those marked with the
+IRQF_NO_SUSPEND flag).
+
+All phases use PM domain, bus, type, class or driver callbacks (that is, methods
+defined in ``dev->pm_domain->ops``, ``dev->bus->pm``, ``dev->type->pm``,
+``dev->class->pm`` or ``dev->driver->pm``). These callbacks are regarded by the
+PM core as mutually exclusive. Moreover, PM domain callbacks always take
+precedence over all of the other callbacks and, for example, type callbacks take
+precedence over bus, class and driver callbacks. To be precise, the following
+rules are used to determine which callback to execute in the given phase:
+
+ 1. If ``dev->pm_domain`` is present, the PM core will choose the callback
+ provided by ``dev->pm_domain->ops`` for execution.
+
+ 2. Otherwise, if both ``dev->type`` and ``dev->type->pm`` are present, the
+ callback provided by ``dev->type->pm`` will be chosen for execution.
+
+ 3. Otherwise, if both ``dev->class`` and ``dev->class->pm`` are present,
+ the callback provided by ``dev->class->pm`` will be chosen for
+ execution.
+
+ 4. Otherwise, if both ``dev->bus`` and ``dev->bus->pm`` are present, the
+ callback provided by ``dev->bus->pm`` will be chosen for execution.
+
+This allows PM domains and device types to override callbacks provided by bus
+types or device classes if necessary.
+
+The PM domain, type, class and bus callbacks may in turn invoke device- or
+driver-specific methods stored in ``dev->driver->pm``, but they don't have to do
+that.
+
+If the subsystem callback chosen for execution is not present, the PM core will
+execute the corresponding method from the ``dev->driver->pm`` set instead if
+there is one.
+
+
+Entering System Suspend
+-----------------------
+
+When the system goes into the freeze, standby or memory sleep state,
+the phases are: ``prepare``, ``suspend``, ``suspend_late``, ``suspend_noirq``.
+
+ 1. The ``prepare`` phase is meant to prevent races by preventing new
+ devices from being registered; the PM core would never know that all the
+ children of a device had been suspended if new children could be
+ registered at will. [By contrast, from the PM core's perspective,
+ devices may be unregistered at any time.] Unlike the other
+ suspend-related phases, during the ``prepare`` phase the device
+ hierarchy is traversed top-down.
+
+ After the ``->prepare`` callback method returns, no new children may be
+ registered below the device. The method may also prepare the device or
+ driver in some way for the upcoming system power transition, but it
+ should not put the device into a low-power state.
+
+ For devices supporting runtime power management, the return value of the
+ prepare callback can be used to indicate to the PM core that it may
+ safely leave the device in runtime suspend (if runtime-suspended
+ already), provided that all of the device's descendants are also left in
+ runtime suspend. Namely, if the prepare callback returns a positive
+ number and that happens for all of the descendants of the device too,
+ and all of them (including the device itself) are runtime-suspended, the
+ PM core will skip the ``suspend``, ``suspend_late`` and
+ ``suspend_noirq`` phases as well as all of the corresponding phases of
+ the subsequent device resume for all of these devices. In that case,
+ the ``->complete`` callback will be invoked directly after the
+ ``->prepare`` callback and is entirely responsible for putting the
+ device into a consistent state as appropriate.
+
+ Note that this direct-complete procedure applies even if the device is
+ disabled for runtime PM; only the runtime-PM status matters. It follows
+ that if a device has system-sleep callbacks but does not support runtime
+ PM, then its prepare callback must never return a positive value. This
+ is because all such devices are initially set to runtime-suspended with
+ runtime PM disabled.
+
+ 2. The ``->suspend`` methods should quiesce the device to stop it from
+ performing I/O. They also may save the device registers and put it into
+ the appropriate low-power state, depending on the bus type the device is
+ on, and they may enable wakeup events.
+
+ 3. For a number of devices it is convenient to split suspend into the
+ "quiesce device" and "save device state" phases, in which cases
+ ``suspend_late`` is meant to do the latter. It is always executed after
+ runtime power management has been disabled for the device in question.
+
+ 4. The ``suspend_noirq`` phase occurs after IRQ handlers have been disabled,
+ which means that the driver's interrupt handler will not be called while
+ the callback method is running. The ``->suspend_noirq`` methods should
+ save the values of the device's registers that weren't saved previously
+ and finally put the device into the appropriate low-power state.
+
+ The majority of subsystems and device drivers need not implement this
+ callback. However, bus types allowing devices to share interrupt
+ vectors, like PCI, generally need it; otherwise a driver might encounter
+ an error during the suspend phase by fielding a shared interrupt
+ generated by some other device after its own device had been set to low
+ power.
+
+At the end of these phases, drivers should have stopped all I/O transactions
+(DMA, IRQs), saved enough state that they can re-initialize or restore previous
+state (as needed by the hardware), and placed the device into a low-power state.
+On many platforms they will gate off one or more clock sources; sometimes they
+will also switch off power supplies or reduce voltages. [Drivers supporting
+runtime PM may already have performed some or all of these steps.]
+
+If :c:func:`device_may_wakeup(dev)` returns ``true``, the device should be
+prepared for generating hardware wakeup signals to trigger a system wakeup event
+when the system is in the sleep state. For example, :c:func:`enable_irq_wake()`
+might identify GPIO signals hooked up to a switch or other external hardware,
+and :c:func:`pci_enable_wake()` does something similar for the PCI PME signal.
+
+If any of these callbacks returns an error, the system won't enter the desired
+low-power state. Instead, the PM core will unwind its actions by resuming all
+the devices that were suspended.
+
+
+Leaving System Suspend
+----------------------
+
+When resuming from freeze, standby or memory sleep, the phases are:
+``resume_noirq``, ``resume_early``, ``resume``, ``complete``.
+
+ 1. The ``->resume_noirq`` callback methods should perform any actions
+ needed before the driver's interrupt handlers are invoked. This
+ generally means undoing the actions of the ``suspend_noirq`` phase. If
+ the bus type permits devices to share interrupt vectors, like PCI, the
+ method should bring the device and its driver into a state in which the
+ driver can recognize if the device is the source of incoming interrupts,
+ if any, and handle them correctly.
+
+ For example, the PCI bus type's ``->pm.resume_noirq()`` puts the device
+ into the full-power state (D0 in the PCI terminology) and restores the
+ standard configuration registers of the device. Then it calls the
+ device driver's ``->pm.resume_noirq()`` method to perform device-specific
+ actions.
+
+ 2. The ``->resume_early`` methods should prepare devices for the execution
+ of the resume methods. This generally involves undoing the actions of
+ the preceding ``suspend_late`` phase.
+
+ 3. The ``->resume`` methods should bring the device back to its operating
+ state, so that it can perform normal I/O. This generally involves
+ undoing the actions of the ``suspend`` phase.
+
+ 4. The ``complete`` phase should undo the actions of the ``prepare`` phase.
+ For this reason, unlike the other resume-related phases, during the
+ ``complete`` phase the device hierarchy is traversed bottom-up.
+
+ Note, however, that new children may be registered below the device as
+ soon as the ``->resume`` callbacks occur; it's not necessary to wait
+ until the ``complete`` phase with that.
+
+ Moreover, if the preceding ``->prepare`` callback returned a positive
+ number, the device may have been left in runtime suspend throughout the
+ whole system suspend and resume (the ``suspend``, ``suspend_late``,
+ ``suspend_noirq`` phases of system suspend and the ``resume_noirq``,
+ ``resume_early``, ``resume`` phases of system resume may have been
+ skipped for it). In that case, the ``->complete`` callback is entirely
+ responsible for putting the device into a consistent state after system
+ suspend if necessary. [For example, it may need to queue up a runtime
+ resume request for the device for this purpose.] To check if that is
+ the case, the ``->complete`` callback can consult the device's
+ ``power.direct_complete`` flag. Namely, if that flag is set when the
+ ``->complete`` callback is being run, it has been called directly after
+ the preceding ``->prepare`` and special actions may be required
+ to make the device work correctly afterward.
+
+At the end of these phases, drivers should be as functional as they were before
+suspending: I/O can be performed using DMA and IRQs, and the relevant clocks are
+gated on.
+
+However, the details here may again be platform-specific. For example,
+some systems support multiple "run" states, and the mode in effect at
+the end of resume might not be the one which preceded suspension.
+That means availability of certain clocks or power supplies changed,
+which could easily affect how a driver works.
+
+Drivers need to be able to handle hardware which has been reset since all of the
+suspend methods were called, for example by complete reinitialization.
+This may be the hardest part, and the one most protected by NDA'd documents
+and chip errata. It's simplest if the hardware state hasn't changed since
+the suspend was carried out, but that can only be guaranteed if the target
+system sleep entered was suspend-to-idle. For the other system sleep states
+that may not be the case (and usually isn't for ACPI-defined system sleep
+states, like S3).
+
+Drivers must also be prepared to notice that the device has been removed
+while the system was powered down, whenever that's physically possible.
+PCMCIA, MMC, USB, Firewire, SCSI, and even IDE are common examples of busses
+where common Linux platforms will see such removal. Details of how drivers
+will notice and handle such removals are currently bus-specific, and often
+involve a separate thread.
+
+These callbacks may return an error value, but the PM core will ignore such
+errors since there's nothing it can do about them other than printing them in
+the system log.
+
+
+Entering Hibernation
+--------------------
+
+Hibernating the system is more complicated than putting it into sleep states,
+because it involves creating and saving a system image. Therefore there are
+more phases for hibernation, with a different set of callbacks. These phases
+always run after tasks have been frozen and enough memory has been freed.
+
+The general procedure for hibernation is to quiesce all devices ("freeze"),
+create an image of the system memory while everything is stable, reactivate all
+devices ("thaw"), write the image to permanent storage, and finally shut down
+the system ("power off"). The phases used to accomplish this are: ``prepare``,
+``freeze``, ``freeze_late``, ``freeze_noirq``, ``thaw_noirq``, ``thaw_early``,
+``thaw``, ``complete``, ``prepare``, ``poweroff``, ``poweroff_late``,
+``poweroff_noirq``.
+
+ 1. The ``prepare`` phase is discussed in the "Entering System Suspend"
+ section above.
+
+ 2. The ``->freeze`` methods should quiesce the device so that it doesn't
+ generate IRQs or DMA, and they may need to save the values of device
+ registers. However the device does not have to be put in a low-power
+ state, and to save time it's best not to do so. Also, the device should
+ not be prepared to generate wakeup events.
+
+ 3. The ``freeze_late`` phase is analogous to the ``suspend_late`` phase
+ described earlier, except that the device should not be put into a
+ low-power state and should not be allowed to generate wakeup events.
+
+ 4. The ``freeze_noirq`` phase is analogous to the ``suspend_noirq`` phase
+ discussed earlier, except again that the device should not be put into
+ a low-power state and should not be allowed to generate wakeup events.
+
+At this point the system image is created. All devices should be inactive and
+the contents of memory should remain undisturbed while this happens, so that the
+image forms an atomic snapshot of the system state.
+
+ 5. The ``thaw_noirq`` phase is analogous to the ``resume_noirq`` phase
+ discussed earlier. The main difference is that its methods can assume
+ the device is in the same state as at the end of the ``freeze_noirq``
+ phase.
+
+ 6. The ``thaw_early`` phase is analogous to the ``resume_early`` phase
+ described above. Its methods should undo the actions of the preceding
+ ``freeze_late``, if necessary.
+
+ 7. The ``thaw`` phase is analogous to the ``resume`` phase discussed
+ earlier. Its methods should bring the device back to an operating
+ state, so that it can be used for saving the image if necessary.
+
+ 8. The ``complete`` phase is discussed in the "Leaving System Suspend"
+ section above.
+
+At this point the system image is saved, and the devices then need to be
+prepared for the upcoming system shutdown. This is much like suspending them
+before putting the system into the suspend-to-idle, shallow or deep sleep state,
+and the phases are similar.
+
+ 9. The ``prepare`` phase is discussed above.
+
+ 10. The ``poweroff`` phase is analogous to the ``suspend`` phase.
+
+ 11. The ``poweroff_late`` phase is analogous to the ``suspend_late`` phase.
+
+ 12. The ``poweroff_noirq`` phase is analogous to the ``suspend_noirq`` phase.
+
+The ``->poweroff``, ``->poweroff_late`` and ``->poweroff_noirq`` callbacks
+should do essentially the same things as the ``->suspend``, ``->suspend_late``
+and ``->suspend_noirq`` callbacks, respectively. The only notable difference is
+that they need not store the device register values, because the registers
+should already have been stored during the ``freeze``, ``freeze_late`` or
+``freeze_noirq`` phases.
+
+
+Leaving Hibernation
+-------------------
+
+Resuming from hibernation is, again, more complicated than resuming from a sleep
+state in which the contents of main memory are preserved, because it requires
+a system image to be loaded into memory and the pre-hibernation memory contents
+to be restored before control can be passed back to the image kernel.
+
+Although in principle the image might be loaded into memory and the
+pre-hibernation memory contents restored by the boot loader, in practice this
+can't be done because boot loaders aren't smart enough and there is no
+established protocol for passing the necessary information. So instead, the
+boot loader loads a fresh instance of the kernel, called "the restore kernel",
+into memory and passes control to it in the usual way. Then the restore kernel
+reads the system image, restores the pre-hibernation memory contents, and passes
+control to the image kernel. Thus two different kernel instances are involved
+in resuming from hibernation. In fact, the restore kernel may be completely
+different from the image kernel: a different configuration and even a different
+version. This has important consequences for device drivers and their
+subsystems.
+
+To be able to load the system image into memory, the restore kernel needs to
+include at least a subset of device drivers allowing it to access the storage
+medium containing the image, although it doesn't need to include all of the
+drivers present in the image kernel. After the image has been loaded, the
+devices managed by the boot kernel need to be prepared for passing control back
+to the image kernel. This is very similar to the initial steps involved in
+creating a system image, and it is accomplished in the same way, using
+``prepare``, ``freeze``, and ``freeze_noirq`` phases. However, the devices
+affected by these phases are only those having drivers in the restore kernel;
+other devices will still be in whatever state the boot loader left them.
+
+Should the restoration of the pre-hibernation memory contents fail, the restore
+kernel would go through the "thawing" procedure described above, using the
+``thaw_noirq``, ``thaw_early``, ``thaw``, and ``complete`` phases, and then
+continue running normally. This happens only rarely. Most often the
+pre-hibernation memory contents are restored successfully and control is passed
+to the image kernel, which then becomes responsible for bringing the system back
+to the working state.
+
+To achieve this, the image kernel must restore the devices' pre-hibernation
+functionality. The operation is much like waking up from a sleep state (with
+the memory contents preserved), although it involves different phases:
+``restore_noirq``, ``restore_early``, ``restore``, ``complete``.
+
+ 1. The ``restore_noirq`` phase is analogous to the ``resume_noirq`` phase.
+
+ 2. The ``restore_early`` phase is analogous to the ``resume_early`` phase.
+
+ 3. The ``restore`` phase is analogous to the ``resume`` phase.
+
+ 4. The ``complete`` phase is discussed above.
+
+The main difference from ``resume[_early|_noirq]`` is that
+``restore[_early|_noirq]`` must assume the device has been accessed and
+reconfigured by the boot loader or the restore kernel. Consequently, the state
+of the device may be different from the state remembered from the ``freeze``,
+``freeze_late`` and ``freeze_noirq`` phases. The device may even need to be
+reset and completely re-initialized. In many cases this difference doesn't
+matter, so the ``->resume[_early|_noirq]`` and ``->restore[_early|_norq]``
+method pointers can be set to the same routines. Nevertheless, different
+callback pointers are used in case there is a situation where it actually does
+matter.
+
+
+Power Management Notifiers
+==========================
+
+There are some operations that cannot be carried out by the power management
+callbacks discussed above, because the callbacks occur too late or too early.
+To handle these cases, subsystems and device drivers may register power
+management notifiers that are called before tasks are frozen and after they have
+been thawed. Generally speaking, the PM notifiers are suitable for performing
+actions that either require user space to be available, or at least won't
+interfere with user space.
+
+For details refer to :doc:`notifiers`.
+
+
+Device Low-Power (suspend) States
+=================================
+
+Device low-power states aren't standard. One device might only handle
+"on" and "off", while another might support a dozen different versions of
+"on" (how many engines are active?), plus a state that gets back to "on"
+faster than from a full "off".
+
+Some buses define rules about what different suspend states mean. PCI
+gives one example: after the suspend sequence completes, a non-legacy
+PCI device may not perform DMA or issue IRQs, and any wakeup events it
+issues would be issued through the PME# bus signal. Plus, there are
+several PCI-standard device states, some of which are optional.
+
+In contrast, integrated system-on-chip processors often use IRQs as the
+wakeup event sources (so drivers would call :c:func:`enable_irq_wake`) and
+might be able to treat DMA completion as a wakeup event (sometimes DMA can stay
+active too, it'd only be the CPU and some peripherals that sleep).
+
+Some details here may be platform-specific. Systems may have devices that
+can be fully active in certain sleep states, such as an LCD display that's
+refreshed using DMA while most of the system is sleeping lightly ... and
+its frame buffer might even be updated by a DSP or other non-Linux CPU while
+the Linux control processor stays idle.
+
+Moreover, the specific actions taken may depend on the target system state.
+One target system state might allow a given device to be very operational;
+another might require a hard shut down with re-initialization on resume.
+And two different target systems might use the same device in different
+ways; the aforementioned LCD might be active in one product's "standby",
+but a different product using the same SOC might work differently.
+
+
+Device Power Management Domains
+===============================
+
+Sometimes devices share reference clocks or other power resources. In those
+cases it generally is not possible to put devices into low-power states
+individually. Instead, a set of devices sharing a power resource can be put
+into a low-power state together at the same time by turning off the shared
+power resource. Of course, they also need to be put into the full-power state
+together, by turning the shared power resource on. A set of devices with this
+property is often referred to as a power domain. A power domain may also be
+nested inside another power domain. The nested domain is referred to as the
+sub-domain of the parent domain.
+
+Support for power domains is provided through the :c:member:`pm_domain` field of
+|struct device|. This field is a pointer to an object of type
+|struct dev_pm_domain|, defined in :file:`include/linux/pm.h``, providing a set
+of power management callbacks analogous to the subsystem-level and device driver
+callbacks that are executed for the given device during all power transitions,
+instead of the respective subsystem-level callbacks. Specifically, if a
+device's :c:member:`pm_domain` pointer is not NULL, the ``->suspend()`` callback
+from the object pointed to by it will be executed instead of its subsystem's
+(e.g. bus type's) ``->suspend()`` callback and analogously for all of the
+remaining callbacks. In other words, power management domain callbacks, if
+defined for the given device, always take precedence over the callbacks provided
+by the device's subsystem (e.g. bus type).
+
+The support for device power management domains is only relevant to platforms
+needing to use the same device driver power management callbacks in many
+different power domain configurations and wanting to avoid incorporating the
+support for power domains into subsystem-level callbacks, for example by
+modifying the platform bus type. Other platforms need not implement it or take
+it into account in any way.
+
+Devices may be defined as IRQ-safe which indicates to the PM core that their
+runtime PM callbacks may be invoked with disabled interrupts (see
+:file:`Documentation/power/runtime_pm.txt` for more information). If an
+IRQ-safe device belongs to a PM domain, the runtime PM of the domain will be
+disallowed, unless the domain itself is defined as IRQ-safe. However, it
+makes sense to define a PM domain as IRQ-safe only if all the devices in it
+are IRQ-safe. Moreover, if an IRQ-safe domain has a parent domain, the runtime
+PM of the parent is only allowed if the parent itself is IRQ-safe too with the
+additional restriction that all child domains of an IRQ-safe parent must also
+be IRQ-safe.
+
+
+Runtime Power Management
+========================
+
+Many devices are able to dynamically power down while the system is still
+running. This feature is useful for devices that are not being used, and
+can offer significant power savings on a running system. These devices
+often support a range of runtime power states, which might use names such
+as "off", "sleep", "idle", "active", and so on. Those states will in some
+cases (like PCI) be partially constrained by the bus the device uses, and will
+usually include hardware states that are also used in system sleep states.
+
+A system-wide power transition can be started while some devices are in low
+power states due to runtime power management. The system sleep PM callbacks
+should recognize such situations and react to them appropriately, but the
+necessary actions are subsystem-specific.
+
+In some cases the decision may be made at the subsystem level while in other
+cases the device driver may be left to decide. In some cases it may be
+desirable to leave a suspended device in that state during a system-wide power
+transition, but in other cases the device must be put back into the full-power
+state temporarily, for example so that its system wakeup capability can be
+disabled. This all depends on the hardware and the design of the subsystem and
+device driver in question.
+
+During system-wide resume from a sleep state it's easiest to put devices into
+the full-power state, as explained in :file:`Documentation/power/runtime_pm.txt`.
+Refer to that document for more information regarding this particular issue as
+well as for information on the device runtime power management framework in
+general.
diff --git a/Documentation/driver-api/pm/index.rst b/Documentation/driver-api/pm/index.rst
new file mode 100644
index 000000000000..2f6d0e9cf6b7
--- /dev/null
+++ b/Documentation/driver-api/pm/index.rst
@@ -0,0 +1,16 @@
+=======================
+Device Power Management
+=======================
+
+.. toctree::
+
+ devices
+ notifiers
+ types
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/driver-api/pm/notifiers.rst b/Documentation/driver-api/pm/notifiers.rst
new file mode 100644
index 000000000000..62f860026992
--- /dev/null
+++ b/Documentation/driver-api/pm/notifiers.rst
@@ -0,0 +1,70 @@
+=============================
+Suspend/Hibernation Notifiers
+=============================
+
+::
+
+ Copyright (c) 2016 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+
+There are some operations that subsystems or drivers may want to carry out
+before hibernation/suspend or after restore/resume, but they require the system
+to be fully functional, so the drivers' and subsystems' ``->suspend()`` and
+``->resume()`` or even ``->prepare()`` and ``->complete()`` callbacks are not
+suitable for this purpose.
+
+For example, device drivers may want to upload firmware to their devices after
+resume/restore, but they cannot do it by calling :c:func:`request_firmware()`
+from their ``->resume()`` or ``->complete()`` callback routines (user land
+processes are frozen at these points). The solution may be to load the firmware
+into memory before processes are frozen and upload it from there in the
+``->resume()`` routine. A suspend/hibernation notifier may be used for that.
+
+Subsystems or drivers having such needs can register suspend notifiers that
+will be called upon the following events by the PM core:
+
+``PM_HIBERNATION_PREPARE``
+ The system is going to hibernate, tasks will be frozen immediately. This
+ is different from ``PM_SUSPEND_PREPARE`` below, because in this case
+ additional work is done between the notifiers and the invocation of PM
+ callbacks for the "freeze" transition.
+
+``PM_POST_HIBERNATION``
+ The system memory state has been restored from a hibernation image or an
+ error occurred during hibernation. Device restore callbacks have been
+ executed and tasks have been thawed.
+
+``PM_RESTORE_PREPARE``
+ The system is going to restore a hibernation image. If all goes well,
+ the restored image kernel will issue a ``PM_POST_HIBERNATION``
+ notification.
+
+``PM_POST_RESTORE``
+ An error occurred during restore from hibernation. Device restore
+ callbacks have been executed and tasks have been thawed.
+
+``PM_SUSPEND_PREPARE``
+ The system is preparing for suspend.
+
+``PM_POST_SUSPEND``
+ The system has just resumed or an error occurred during suspend. Device
+ resume callbacks have been executed and tasks have been thawed.
+
+It is generally assumed that whatever the notifiers do for
+``PM_HIBERNATION_PREPARE``, should be undone for ``PM_POST_HIBERNATION``.
+Analogously, operations carried out for ``PM_SUSPEND_PREPARE`` should be
+reversed for ``PM_POST_SUSPEND``.
+
+Moreover, if one of the notifiers fails for the ``PM_HIBERNATION_PREPARE`` or
+``PM_SUSPEND_PREPARE`` event, the notifiers that have already succeeded for that
+event will be called for ``PM_POST_HIBERNATION`` or ``PM_POST_SUSPEND``,
+respectively.
+
+The hibernation and suspend notifiers are called with :c:data:`pm_mutex` held.
+They are defined in the usual way, but their last argument is meaningless (it is
+always NULL).
+
+To register and/or unregister a suspend notifier use
+:c:func:`register_pm_notifier()` and :c:func:`unregister_pm_notifier()`,
+respectively (both defined in :file:`include/linux/suspend.h`). If you don't
+need to unregister the notifier, you can also use the :c:func:`pm_notifier()`
+macro defined in :file:`include/linux/suspend.h`.
diff --git a/Documentation/driver-api/pm/types.rst b/Documentation/driver-api/pm/types.rst
new file mode 100644
index 000000000000..3ebdecc54104
--- /dev/null
+++ b/Documentation/driver-api/pm/types.rst
@@ -0,0 +1,5 @@
+==================================
+Device Power Management Data Types
+==================================
+
+.. kernel-doc:: include/linux/pm.h
diff --git a/Documentation/driver-api/regulator.rst b/Documentation/driver-api/regulator.rst
new file mode 100644
index 000000000000..520da0a5251d
--- /dev/null
+++ b/Documentation/driver-api/regulator.rst
@@ -0,0 +1,170 @@
+.. Copyright 2007-2008 Wolfson Microelectronics
+
+.. This documentation is free software; you can redistribute
+.. it and/or modify it under the terms of the GNU General Public
+.. License version 2 as published by the Free Software Foundation.
+
+=================================
+Voltage and current regulator API
+=================================
+
+:Author: Liam Girdwood
+:Author: Mark Brown
+
+Introduction
+============
+
+This framework is designed to provide a standard kernel interface to
+control voltage and current regulators.
+
+The intention is to allow systems to dynamically control regulator power
+output in order to save power and prolong battery life. This applies to
+both voltage regulators (where voltage output is controllable) and
+current sinks (where current limit is controllable).
+
+Note that additional (and currently more complete) documentation is
+available in the Linux kernel source under
+``Documentation/power/regulator``.
+
+Glossary
+--------
+
+The regulator API uses a number of terms which may not be familiar:
+
+Regulator
+
+ Electronic device that supplies power to other devices. Most regulators
+ can enable and disable their output and some can also control their
+ output voltage or current.
+
+Consumer
+
+ Electronic device which consumes power provided by a regulator. These
+ may either be static, requiring only a fixed supply, or dynamic,
+ requiring active management of the regulator at runtime.
+
+Power Domain
+
+ The electronic circuit supplied by a given regulator, including the
+ regulator and all consumer devices. The configuration of the regulator
+ is shared between all the components in the circuit.
+
+Power Management Integrated Circuit (PMIC)
+
+ An IC which contains numerous regulators and often also other
+ subsystems. In an embedded system the primary PMIC is often equivalent
+ to a combination of the PSU and southbridge in a desktop system.
+
+Consumer driver interface
+=========================
+
+This offers a similar API to the kernel clock framework. Consumer
+drivers use `get <#API-regulator-get>`__ and
+`put <#API-regulator-put>`__ operations to acquire and release
+regulators. Functions are provided to `enable <#API-regulator-enable>`__
+and `disable <#API-regulator-disable>`__ the regulator and to get and
+set the runtime parameters of the regulator.
+
+When requesting regulators consumers use symbolic names for their
+supplies, such as "Vcc", which are mapped into actual regulator devices
+by the machine interface.
+
+A stub version of this API is provided when the regulator framework is
+not in use in order to minimise the need to use ifdefs.
+
+Enabling and disabling
+----------------------
+
+The regulator API provides reference counted enabling and disabling of
+regulators. Consumer devices use the :c:func:`regulator_enable()` and
+:c:func:`regulator_disable()` functions to enable and disable
+regulators. Calls to the two functions must be balanced.
+
+Note that since multiple consumers may be using a regulator and machine
+constraints may not allow the regulator to be disabled there is no
+guarantee that calling :c:func:`regulator_disable()` will actually
+cause the supply provided by the regulator to be disabled. Consumer
+drivers should assume that the regulator may be enabled at all times.
+
+Configuration
+-------------
+
+Some consumer devices may need to be able to dynamically configure their
+supplies. For example, MMC drivers may need to select the correct
+operating voltage for their cards. This may be done while the regulator
+is enabled or disabled.
+
+The :c:func:`regulator_set_voltage()` and
+:c:func:`regulator_set_current_limit()` functions provide the primary
+interface for this. Both take ranges of voltages and currents, supporting
+drivers that do not require a specific value (eg, CPU frequency scaling
+normally permits the CPU to use a wider range of supply voltages at lower
+frequencies but does not require that the supply voltage be lowered). Where
+an exact value is required both minimum and maximum values should be
+identical.
+
+Callbacks
+---------
+
+Callbacks may also be registered for events such as regulation failures.
+
+Regulator driver interface
+==========================
+
+Drivers for regulator chips register the regulators with the regulator
+core, providing operations structures to the core. A notifier interface
+allows error conditions to be reported to the core.
+
+Registration should be triggered by explicit setup done by the platform,
+supplying a struct :c:type:`regulator_init_data` for the regulator
+containing constraint and supply information.
+
+Machine interface
+=================
+
+This interface provides a way to define how regulators are connected to
+consumers on a given system and what the valid operating parameters are
+for the system.
+
+Supplies
+--------
+
+Regulator supplies are specified using struct
+:c:type:`regulator_consumer_supply`. This is done at driver registration
+time as part of the machine constraints.
+
+Constraints
+-----------
+
+As well as defining the connections the machine interface also provides
+constraints defining the operations that clients are allowed to perform
+and the parameters that may be set. This is required since generally
+regulator devices will offer more flexibility than it is safe to use on
+a given system, for example supporting higher supply voltages than the
+consumers are rated for.
+
+This is done at driver registration time` by providing a
+struct :c:type:`regulation_constraints`.
+
+The constraints may also specify an initial configuration for the
+regulator in the constraints, which is particularly useful for use with
+static consumers.
+
+API reference
+=============
+
+Due to limitations of the kernel documentation framework and the
+existing layout of the source code the entire regulator API is
+documented here.
+
+.. kernel-doc:: include/linux/regulator/consumer.h
+ :internal:
+
+.. kernel-doc:: include/linux/regulator/machine.h
+ :internal:
+
+.. kernel-doc:: include/linux/regulator/driver.h
+ :internal:
+
+.. kernel-doc:: drivers/regulator/core.c
+ :export: