/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include #include #include "misc.h" #include "crypto.h" #include "sb.h" static void fill_gaps(struct sb_file_t *sb) { for(int i = 0; i < sb->nr_sections; i++) { struct sb_section_t *sec = &sb->sections[i]; for(int j = 0; j < sec->nr_insts; j++) { struct sb_inst_t *inst = &sec->insts[j]; if(inst->inst != SB_INST_LOAD) continue; inst->padding_size = ROUND_UP(inst->size, BLOCK_SIZE) - inst->size; /* emulate elftosb2 behaviour: generate 15 bytes (that's a safe maximum) */ inst->padding = xmalloc(15); generate_random_data(inst->padding, 15); } } } static void compute_sb_offsets(struct sb_file_t *sb) { sb->image_size = 0; /* sb header */ sb->image_size += sizeof(struct sb_header_t) / BLOCK_SIZE; /* sections headers */ sb->image_size += sb->nr_sections * sizeof(struct sb_section_header_t) / BLOCK_SIZE; /* key dictionary */ sb->image_size += g_nr_keys * sizeof(struct sb_key_dictionary_entry_t) / BLOCK_SIZE; /* sections */ for(int i = 0; i < sb->nr_sections; i++) { /* each section has a preliminary TAG command */ sb->image_size += sizeof(struct sb_instruction_tag_t) / BLOCK_SIZE; /* we might need to pad the section so compute next alignment */ uint32_t alignment = BLOCK_SIZE; if((i + 1) < sb->nr_sections) alignment = sb->sections[i + 1].alignment; alignment /= BLOCK_SIZE; /* alignment in block sizes */ struct sb_section_t *sec = &sb->sections[i]; if(g_debug) { printf("%s section 0x%08x", sec->is_data ? "Data" : "Boot", sec->identifier); if(sec->is_cleartext) printf(" (cleartext)"); printf("\n"); } sec->file_offset = sb->image_size; for(int j = 0; j < sec->nr_insts; j++) { struct sb_inst_t *inst = &sec->insts[j]; if(inst->inst == SB_INST_CALL || inst->inst == SB_INST_JUMP) { if(g_debug) printf(" %s | addr=0x%08x | arg=0x%08x\n", inst->inst == SB_INST_CALL ? "CALL" : "JUMP", inst->addr, inst->argument); sb->image_size += sizeof(struct sb_instruction_call_t) / BLOCK_SIZE; sec->sec_size += sizeof(struct sb_instruction_call_t) / BLOCK_SIZE; } else if(inst->inst == SB_INST_FILL) { if(g_debug) printf(" FILL | addr=0x%08x | len=0x%08x | pattern=0x%08x\n", inst->addr, inst->size, inst->pattern); sb->image_size += sizeof(struct sb_instruction_fill_t) / BLOCK_SIZE; sec->sec_size += sizeof(struct sb_instruction_fill_t) / BLOCK_SIZE; } else if(inst->inst == SB_INST_LOAD) { if(g_debug) printf(" LOAD | addr=0x%08x | len=0x%08x\n", inst->addr, inst->size); /* load header */ sb->image_size += sizeof(struct sb_instruction_load_t) / BLOCK_SIZE; sec->sec_size += sizeof(struct sb_instruction_load_t) / BLOCK_SIZE; /* data + alignment */ sb->image_size += (inst->size + inst->padding_size) / BLOCK_SIZE; sec->sec_size += (inst->size + inst->padding_size) / BLOCK_SIZE; } else if(inst->inst == SB_INST_MODE) { if(g_debug) printf(" MODE | mod=0x%08x", inst->addr); sb->image_size += sizeof(struct sb_instruction_mode_t) / BLOCK_SIZE; sec->sec_size += sizeof(struct sb_instruction_mode_t) / BLOCK_SIZE; } else if(inst->inst == SB_INST_DATA) { if(g_debug) printf(" DATA | size=0x%08x\n", inst->size); sb->image_size += ROUND_UP(inst->size, BLOCK_SIZE) / BLOCK_SIZE; sec->sec_size += ROUND_UP(inst->size, BLOCK_SIZE) / BLOCK_SIZE; } else bug("die on inst %d\n", inst->inst); } /* we need to make sure next section starts on the right alignment. * Since each section starts with a boot tag, we thus need to ensure * that this sections ends at adress X such that X+BLOCK_SIZE is * a multiple of the alignment. * For data sections, we just add random data, otherwise we add nops */ uint32_t missing_sz = alignment - ((sb->image_size + 1) % alignment); if(missing_sz != alignment) { struct sb_inst_t *aug_insts; int nr_aug_insts = 0; if(sb->sections[i].is_data) { nr_aug_insts = 1; aug_insts = malloc(sizeof(struct sb_inst_t)); memset(aug_insts, 0, sizeof(struct sb_inst_t)); aug_insts[0].inst = SB_INST_DATA; aug_insts[0].size = missing_sz * BLOCK_SIZE; aug_insts[0].data = xmalloc(missing_sz * BLOCK_SIZE); generate_random_data(aug_insts[0].data, missing_sz * BLOCK_SIZE); if(g_debug) printf(" DATA | size=0x%08x\n", aug_insts[0].size); } else { nr_aug_insts = missing_sz; aug_insts = malloc(sizeof(struct sb_inst_t) * nr_aug_insts); memset(aug_insts, 0, sizeof(struct sb_inst_t) * nr_aug_insts); for(int j = 0; j < nr_aug_insts; j++) { aug_insts[j].inst = SB_INST_NOP; if(g_debug) printf(" NOOP\n"); } } sb->sections[i].insts = augment_array(sb->sections[i].insts, sizeof(struct sb_inst_t), sb->sections[i].nr_insts, aug_insts, nr_aug_insts); sb->sections[i].nr_insts += nr_aug_insts; /* augment image and section size */ sb->image_size += missing_sz; sec->sec_size += missing_sz; } } /* final signature */ sb->image_size += 2; } static uint64_t generate_timestamp() { struct tm tm_base = {0, 0, 0, 1, 0, 100, 0, 0, 1, 0, NULL}; /* 2000/1/1 0:00:00 */ time_t t = time(NULL) - mktime(&tm_base); return (uint64_t)t * 1000000L; } static uint16_t swap16(uint16_t t) { return (t << 8) | (t >> 8); } static void fix_version(struct sb_version_t *ver) { ver->major = swap16(ver->major); ver->minor = swap16(ver->minor); ver->revision = swap16(ver->revision); } static void produce_sb_header(struct sb_file_t *sb, struct sb_header_t *sb_hdr) { struct sha_1_params_t sha_1_params; sb_hdr->signature[0] = 'S'; sb_hdr->signature[1] = 'T'; sb_hdr->signature[2] = 'M'; sb_hdr->signature[3] = 'P'; sb_hdr->major_ver = IMAGE_MAJOR_VERSION; sb_hdr->minor_ver = IMAGE_MINOR_VERSION; sb_hdr->flags = 0; sb_hdr->image_size = sb->image_size; sb_hdr->header_size = sizeof(struct sb_header_t) / BLOCK_SIZE; sb_hdr->first_boot_sec_id = sb->sections[0].identifier; sb_hdr->nr_keys = g_nr_keys; sb_hdr->nr_sections = sb->nr_sections; sb_hdr->sec_hdr_size = sizeof(struct sb_section_header_t) / BLOCK_SIZE; sb_hdr->key_dict_off = sb_hdr->header_size + sb_hdr->sec_hdr_size * sb_hdr->nr_sections; sb_hdr->first_boot_tag_off = sb_hdr->key_dict_off + sizeof(struct sb_key_dictionary_entry_t) * sb_hdr->nr_keys / BLOCK_SIZE; generate_random_data(sb_hdr->rand_pad0, sizeof(sb_hdr->rand_pad0)); generate_random_data(sb_hdr->rand_pad1, sizeof(sb_hdr->rand_pad1)); sb_hdr->timestamp = generate_timestamp(); sb_hdr->product_ver = sb->product_ver; fix_version(&sb_hdr->product_ver); sb_hdr->component_ver = sb->component_ver; fix_version(&sb_hdr->component_ver); sb_hdr->drive_tag = 0; sha_1_init(&sha_1_params); sha_1_update(&sha_1_params, &sb_hdr->signature[0], sizeof(struct sb_header_t) - sizeof(sb_hdr->sha1_header)); sha_1_finish(&sha_1_params); sha_1_output(&sha_1_params, sb_hdr->sha1_header); } static void produce_sb_section_header(struct sb_section_t *sec, struct sb_section_header_t *sec_hdr) { sec_hdr->identifier = sec->identifier; sec_hdr->offset = sec->file_offset; sec_hdr->size = sec->sec_size; sec_hdr->flags = (sec->is_data ? 0 : SECTION_BOOTABLE) | (sec->is_cleartext ? SECTION_CLEARTEXT : 0); } static uint8_t instruction_checksum(struct sb_instruction_header_t *hdr) { uint8_t sum = 90; byte *ptr = (byte *)hdr; for(int i = 1; i < 16; i++) sum += ptr[i]; return sum; } static void produce_section_tag_cmd(struct sb_section_t *sec, struct sb_instruction_tag_t *tag, bool is_last) { tag->hdr.opcode = SB_INST_TAG; tag->hdr.flags = is_last ? SB_INST_LAST_TAG : 0; tag->identifier = sec->identifier; tag->len = sec->sec_size; tag->flags = (sec->is_data ? 0 : SECTION_BOOTABLE) | (sec->is_cleartext ? SECTION_CLEARTEXT : 0); tag->hdr.checksum = instruction_checksum(&tag->hdr); } void produce_sb_instruction(struct sb_inst_t *inst, struct sb_instruction_common_t *cmd) { memset(cmd, 0, sizeof(struct sb_instruction_common_t)); cmd->hdr.opcode = inst->inst; switch(inst->inst) { case SB_INST_CALL: case SB_INST_JUMP: cmd->addr = inst->addr; cmd->data = inst->argument; break; case SB_INST_FILL: cmd->addr = inst->addr; cmd->len = inst->size; cmd->data = inst->pattern; break; case SB_INST_LOAD: cmd->addr = inst->addr; cmd->len = inst->size; cmd->data = crc_continue(crc(inst->data, inst->size), inst->padding, inst->padding_size); break; case SB_INST_MODE: cmd->data = inst->addr; break; case SB_INST_NOP: break; default: bug("die\n"); } cmd->hdr.checksum = instruction_checksum(&cmd->hdr); } void sb_produce_file(struct sb_file_t *sb, const char *filename) { FILE *fd = fopen(filename, "wb"); if(fd == NULL) bugp("cannot open output file"); struct crypto_key_t real_key; real_key.method = CRYPTO_KEY; byte crypto_iv[16]; byte (*cbc_macs)[16] = xmalloc(16 * g_nr_keys); /* init CBC-MACs */ for(int i = 0; i < g_nr_keys; i++) memset(cbc_macs[i], 0, 16); fill_gaps(sb); compute_sb_offsets(sb); generate_random_data(real_key.u.key, 16); /* global SHA-1 */ struct sha_1_params_t file_sha1; sha_1_init(&file_sha1); /* produce and write header */ struct sb_header_t sb_hdr; produce_sb_header(sb, &sb_hdr); sha_1_update(&file_sha1, (byte *)&sb_hdr, sizeof(sb_hdr)); fwrite(&sb_hdr, 1, sizeof(sb_hdr), fd); memcpy(crypto_iv, &sb_hdr, 16); /* update CBC-MACs */ for(int i = 0; i < g_nr_keys; i++) crypto_cbc((byte *)&sb_hdr, NULL, sizeof(sb_hdr) / BLOCK_SIZE, &g_key_array[i], cbc_macs[i], &cbc_macs[i], 1); /* produce and write section headers */ for(int i = 0; i < sb_hdr.nr_sections; i++) { struct sb_section_header_t sb_sec_hdr; produce_sb_section_header(&sb->sections[i], &sb_sec_hdr); sha_1_update(&file_sha1, (byte *)&sb_sec_hdr, sizeof(sb_sec_hdr)); fwrite(&sb_sec_hdr, 1, sizeof(sb_sec_hdr), fd); /* update CBC-MACs */ for(int j = 0; j < g_nr_keys; j++) crypto_cbc((byte *)&sb_sec_hdr, NULL, sizeof(sb_sec_hdr) / BLOCK_SIZE, &g_key_array[j], cbc_macs[j], &cbc_macs[j], 1); } /* produce key dictionary */ for(int i = 0; i < g_nr_keys; i++) { struct sb_key_dictionary_entry_t entry; memcpy(entry.hdr_cbc_mac, cbc_macs[i], 16); crypto_cbc(real_key.u.key, entry.key, 1, &g_key_array[i], crypto_iv, NULL, 1); fwrite(&entry, 1, sizeof(entry), fd); sha_1_update(&file_sha1, (byte *)&entry, sizeof(entry)); } /* HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK */ /* Image crafting, don't use it unless you understand what you do */ if(sb->real_key != NULL) memcpy(real_key.u.key, *sb->real_key, 16); if(sb->crypto_iv != NULL) memcpy(crypto_iv, *sb->crypto_iv, 16); /* KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH */ if(g_debug) { printf("Real key: "); for(int j = 0; j < 16; j++) printf("%02x", real_key.u.key[j]); printf("\n"); printf("IV : "); for(int j = 0; j < 16; j++) printf("%02x", crypto_iv[j]); printf("\n"); } /* produce sections data */ for(int i = 0; i< sb_hdr.nr_sections; i++) { /* produce tag command */ struct sb_instruction_tag_t tag_cmd; produce_section_tag_cmd(&sb->sections[i], &tag_cmd, (i + 1) == sb_hdr.nr_sections); if(g_nr_keys > 0) crypto_cbc((byte *)&tag_cmd, (byte *)&tag_cmd, sizeof(tag_cmd) / BLOCK_SIZE, &real_key, crypto_iv, NULL, 1); sha_1_update(&file_sha1, (byte *)&tag_cmd, sizeof(tag_cmd)); fwrite(&tag_cmd, 1, sizeof(tag_cmd), fd); /* produce other commands */ byte cur_cbc_mac[16]; memcpy(cur_cbc_mac, crypto_iv, 16); for(int j = 0; j < sb->sections[i].nr_insts; j++) { struct sb_inst_t *inst = &sb->sections[i].insts[j]; /* command */ if(inst->inst != SB_INST_DATA) { struct sb_instruction_common_t cmd; produce_sb_instruction(inst, &cmd); if(g_nr_keys > 0 && !sb->sections[i].is_cleartext) crypto_cbc((byte *)&cmd, (byte *)&cmd, sizeof(cmd) / BLOCK_SIZE, &real_key, cur_cbc_mac, &cur_cbc_mac, 1); sha_1_update(&file_sha1, (byte *)&cmd, sizeof(cmd)); fwrite(&cmd, 1, sizeof(cmd), fd); } /* data */ if(inst->inst == SB_INST_LOAD || inst->inst == SB_INST_DATA) { uint32_t sz = inst->size + inst->padding_size; byte *data = xmalloc(sz); memcpy(data, inst->data, inst->size); memcpy(data + inst->size, inst->padding, inst->padding_size); if(g_nr_keys > 0 && !sb->sections[i].is_cleartext) crypto_cbc(data, data, sz / BLOCK_SIZE, &real_key, cur_cbc_mac, &cur_cbc_mac, 1); sha_1_update(&file_sha1, data, sz); fwrite(data, 1, sz, fd); free(data); } } } /* write file SHA-1 */ byte final_sig[32]; sha_1_finish(&file_sha1); sha_1_output(&file_sha1, final_sig); generate_random_data(final_sig + 20, 12); if(g_nr_keys > 0) crypto_cbc(final_sig, final_sig, 2, &real_key, crypto_iv, NULL, 1); fwrite(final_sig, 1, 32, fd); fclose(fd); }