/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2005 by Nick Lanham * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "autoconf.h" #include #include #include #include "debug.h" #include "kernel.h" #include "sound.h" #ifdef HAVE_RECORDING #ifndef REC_SAMPR_CAPS #define REC_SAMPR_CAPS SAMPR_CAP_44 #endif #endif #include "pcm_sampr.h" #include "SDL.h" static bool pcm_playing; static bool pcm_paused; static int cvt_status = -1; static unsigned long pcm_frequency = SAMPR_44; static unsigned long pcm_curr_frequency = SAMPR_44; static Uint8* pcm_data; static size_t pcm_data_size; static size_t pcm_sample_bytes; static size_t pcm_channel_bytes; struct pcm_udata { Uint8 *stream; Uint32 num_in; Uint32 num_out; FILE *debug; } udata; static SDL_AudioSpec obtained; static SDL_AudioCVT cvt; extern bool debug_audio; #ifndef MIN #define MIN(a, b) (((a) < (b)) ? (a) : (b)) #endif static void pcm_apply_settings_nolock(void) { cvt_status = SDL_BuildAudioCVT(&cvt, AUDIO_S16SYS, 2, pcm_frequency, obtained.format, obtained.channels, obtained.freq); pcm_curr_frequency = pcm_frequency; if (cvt_status < 0) { cvt.len_ratio = (double)obtained.freq / (double)pcm_curr_frequency; } } void pcm_apply_settings(void) { SDL_LockAudio(); pcm_apply_settings_nolock(); SDL_UnlockAudio(); } static void sdl_dma_start_nolock(const void *addr, size_t size) { pcm_playing = false; pcm_apply_settings_nolock(); pcm_data = (Uint8 *) addr; pcm_data_size = size; pcm_playing = true; SDL_PauseAudio(0); } static void sdl_dma_stop_nolock(void) { pcm_playing = false; SDL_PauseAudio(1); pcm_paused = false; } static void (*callback_for_more)(unsigned char**, size_t*) = NULL; void pcm_play_data(void (*get_more)(unsigned char** start, size_t* size), unsigned char* start, size_t size) { SDL_LockAudio(); callback_for_more = get_more; if (!(start && size)) { if (get_more) get_more(&start, &size); } if (start && size) { sdl_dma_start_nolock(start, size); } SDL_UnlockAudio(); } size_t pcm_get_bytes_waiting(void) { return pcm_data_size; } void pcm_mute(bool mute) { (void) mute; } void pcm_play_stop(void) { SDL_LockAudio(); if (pcm_playing) { sdl_dma_stop_nolock(); } SDL_UnlockAudio(); } void pcm_play_pause(bool play) { size_t next_size; Uint8 *next_start; SDL_LockAudio(); if (!pcm_playing) { SDL_UnlockAudio(); return; } if(pcm_paused && play) { if (pcm_get_bytes_waiting()) { printf("unpause\n"); pcm_apply_settings_nolock(); SDL_PauseAudio(0); } else { printf("unpause, no data waiting\n"); void (*get_more)(unsigned char**, size_t*) = callback_for_more; if (get_more) { get_more(&next_start, &next_size); } if (next_start && next_size) { sdl_dma_start_nolock(next_start, next_size); } else { sdl_dma_stop_nolock(); printf("unpause attempted, no data\n"); } } } else if(!pcm_paused && !play) { printf("pause\n"); SDL_PauseAudio(1); } pcm_paused = !play; SDL_UnlockAudio(); } bool pcm_is_paused(void) { return pcm_paused; } bool pcm_is_playing(void) { return pcm_playing; } void pcm_set_frequency(unsigned int frequency) { switch (frequency) { HW_HAVE_8_( case SAMPR_8:) HW_HAVE_11_(case SAMPR_11:) HW_HAVE_12_(case SAMPR_12:) HW_HAVE_16_(case SAMPR_16:) HW_HAVE_22_(case SAMPR_22:) HW_HAVE_24_(case SAMPR_24:) HW_HAVE_32_(case SAMPR_32:) HW_HAVE_44_(case SAMPR_44:) HW_HAVE_48_(case SAMPR_48:) HW_HAVE_64_(case SAMPR_64:) HW_HAVE_88_(case SAMPR_88:) HW_HAVE_96_(case SAMPR_96:) break; default: frequency = SAMPR_44; } pcm_frequency = frequency; } /* * This function goes directly into the DMA buffer to calculate the left and * right peak values. To avoid missing peaks it tries to look forward two full * peek periods (2/HZ sec, 100% overlap), although it's always possible that * the entire period will not be visible. To reduce CPU load it only looks at * every third sample, and this can be reduced even further if needed (even * every tenth sample would still be pretty accurate). */ #define PEAK_SAMPLES (44100*2/HZ) /* 44100 samples * 2 / 100 Hz tick */ #define PEAK_STRIDE 3 /* every 3rd sample is plenty... */ void pcm_calculate_peaks(int *left, int *right) { long samples = (long) pcm_data_size / 4; short *addr = (short *) pcm_data; if (samples > PEAK_SAMPLES) samples = PEAK_SAMPLES; samples /= PEAK_STRIDE; if (left && right) { int left_peak = 0, right_peak = 0, value; while (samples--) { if ((value = addr [0]) > left_peak) left_peak = value; else if (-value > left_peak) left_peak = -value; if ((value = addr [PEAK_STRIDE | 1]) > right_peak) right_peak = value; else if (-value > right_peak) right_peak = -value; addr += PEAK_STRIDE * 2; } *left = left_peak; *right = right_peak; } else if (left || right) { int peak_value = 0, value; if (right) addr += (PEAK_STRIDE | 1); while (samples--) { if ((value = addr [0]) > peak_value) peak_value = value; else if (-value > peak_value) peak_value = -value; addr += PEAK_STRIDE * 2; } if (left) *left = peak_value; else *right = peak_value; } } void write_to_soundcard(struct pcm_udata *udata) { if (cvt.needed) { Uint32 rd = udata->num_in; Uint32 wr = (double)rd * cvt.len_ratio; if (wr > udata->num_out) { wr = udata->num_out; rd = (double)wr / cvt.len_ratio; if (rd > udata->num_in) { rd = udata->num_in; wr = (double)rd * cvt.len_ratio; } } if (wr == 0 || rd == 0) { udata->num_out = udata->num_in = 0; return; } if (cvt_status > 0) { cvt.len = rd * pcm_sample_bytes; cvt.buf = (Uint8 *) malloc(cvt.len * cvt.len_mult); memcpy(cvt.buf, pcm_data, cvt.len); SDL_ConvertAudio(&cvt); memcpy(udata->stream, cvt.buf, cvt.len_cvt); udata->num_in = cvt.len / pcm_sample_bytes; udata->num_out = cvt.len_cvt / pcm_sample_bytes; if (udata->debug != NULL) { fwrite(cvt.buf, sizeof(Uint8), cvt.len_cvt, udata->debug); } free(cvt.buf); } else { /* Convert is bad, so do silence */ Uint32 num = wr*obtained.channels; udata->num_in = rd; udata->num_out = wr; switch (pcm_channel_bytes) { case 1: { Uint8 *stream = udata->stream; while (num-- > 0) *stream++ = obtained.silence; break; } case 2: { Uint16 *stream = (Uint16 *)udata->stream; while (num-- > 0) *stream++ = obtained.silence; break; } } if (udata->debug != NULL) { fwrite(udata->stream, sizeof(Uint8), wr, udata->debug); } } } else { udata->num_in = udata->num_out = MIN(udata->num_in, udata->num_out); memcpy(udata->stream, pcm_data, udata->num_out * pcm_sample_bytes); if (udata->debug != NULL) { fwrite(pcm_data, sizeof(Uint8), udata->num_out * pcm_sample_bytes, udata->debug); } } } void sdl_audio_callback(struct pcm_udata *udata, Uint8 *stream, int len) { udata->stream = stream; /* Write what we have in the PCM buffer */ if (pcm_data_size > 0) goto start; /* Audio card wants more? Get some more then. */ while (len > 0) { if ((ssize_t)pcm_data_size <= 0) { pcm_data_size = 0; if (callback_for_more) callback_for_more(&pcm_data, &pcm_data_size); } if (pcm_data_size > 0) { start: udata->num_in = pcm_data_size / pcm_sample_bytes; udata->num_out = len / pcm_sample_bytes; write_to_soundcard(udata); udata->num_in *= pcm_sample_bytes; udata->num_out *= pcm_sample_bytes; pcm_data += udata->num_in; pcm_data_size -= udata->num_in; udata->stream += udata->num_out; len -= udata->num_out; } else { DEBUGF("sdl_audio_callback: No Data.\n"); sdl_dma_stop_nolock(); break; } } } #ifdef HAVE_RECORDING void pcm_init_recording(void) { } void pcm_close_recording(void) { } void pcm_record_data(void (*more_ready)(void* start, size_t size), void *start, size_t size) { (void)more_ready; (void)start; (void)size; } void pcm_stop_recording(void) { } void pcm_record_more(void *start, size_t size) { (void)start; (void)size; } void pcm_calculate_rec_peaks(int *left, int *right) { if (left) *left = 0; if (right) *right = 0; } unsigned long pcm_rec_status(void) { return 0; } #endif /* HAVE_RECORDING */ int pcm_init(void) { SDL_AudioSpec wanted_spec; udata.debug = NULL; if (debug_audio) { udata.debug = fopen("audiodebug.raw", "wb"); } /* Set 16-bit stereo audio at 44Khz */ wanted_spec.freq = 44100; wanted_spec.format = AUDIO_S16SYS; wanted_spec.channels = 2; wanted_spec.samples = 2048; wanted_spec.callback = (void (SDLCALL *)(void *userdata, Uint8 *stream, int len))sdl_audio_callback; wanted_spec.userdata = &udata; /* Open the audio device and start playing sound! */ if(SDL_OpenAudio(&wanted_spec, &obtained) < 0) { fprintf(stderr, "Unable to open audio: %s\n", SDL_GetError()); return -1; } switch (obtained.format) { case AUDIO_U8: case AUDIO_S8: pcm_channel_bytes = 1; break; case AUDIO_U16LSB: case AUDIO_S16LSB: case AUDIO_U16MSB: case AUDIO_S16MSB: pcm_channel_bytes = 2; break; default: fprintf(stderr, "Unknown sample format obtained: %u\n", (unsigned)obtained.format); return -1; } pcm_sample_bytes = obtained.channels * pcm_channel_bytes; pcm_apply_settings_nolock(); sdl_dma_stop_nolock(); return 0; } void pcm_postinit(void) { }