// Game_Music_Emu 0.5.2. http://www.slack.net/~ant/ #include "hes_emu.h" #include "blargg_endian.h" #include "blargg_source.h" /* Copyright (C) 2006 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ int const timer_mask = 0x04; int const vdp_mask = 0x02; int const i_flag_mask = 0x04; int const unmapped = 0xFF; int const period_60hz = 262 * 455; // scanlines * clocks per scanline const char gme_wrong_file_type [] = "Wrong file type for this emulator"; static void clear_track_vars( struct Hes_Emu* this ) { this->current_track_ = -1; track_stop( &this->track_filter ); } void Hes_init( struct Hes_Emu* this ) { this->sample_rate_ = 0; this->mute_mask_ = 0; this->tempo_ = (int)(FP_ONE_TEMPO); // defaults this->tfilter = *track_get_setup( &this->track_filter ); this->tfilter.max_initial = 2; this->tfilter.lookahead = 6; this->track_filter.silence_ignored_ = false; this->timer.raw_load = 0; Sound_set_gain( this, (int)(FP_ONE_GAIN*1.11) ); Rom_init( &this->rom, 0x2000 ); Apu_init( &this->apu ); Adpcm_init( &this->adpcm ); Cpu_init( &this->cpu ); /* Set default track count */ this->track_count = 255; // clears fields this->voice_count_ = 0; this->voice_types_ = 0; clear_track_vars( this ); } static blargg_err_t check_hes_header( void const* header ) { if ( memcmp( header, "HESM", 4 ) ) return gme_wrong_file_type; return 0; } // Setup blargg_err_t Hes_load_mem( struct Hes_Emu* this, void* data, long size ) { // Unload this->voice_count_ = 0; this->track_count = 255; this->m3u.size = 0; clear_track_vars( this ); assert( offsetof (struct header_t,unused [4]) == header_size ); RETURN_ERR( Rom_load( &this->rom, data, size, header_size, &this->header, unmapped ) ); RETURN_ERR( check_hes_header( this->header.tag ) ); /* if ( header_.vers != 0 ) warning( "Unknown file version" ); if ( memcmp( header_.data_tag, "DATA", 4 ) ) warning( "Data header missing" ); if ( memcmp( header_.unused, "\0\0\0\0", 4 ) ) warning( "Unknown header data" ); */ // File spec supports multiple blocks, but I haven't found any, and // many files have bad sizes in the only block, so it's simpler to // just try to load the damn data as best as possible. int addr = get_le32( this->header.addr ); /* int rom_size = get_le32( this->header.size ); */ int const rom_max = 0x100000; if ( (unsigned) addr >= (unsigned) rom_max ) { /* warning( "Invalid address" ); */ addr &= rom_max - 1; } /* if ( (unsigned) (addr + size) > (unsigned) rom_max ) warning( "Invalid size" ); if ( rom_size != rom.file_size() ) { if ( size <= rom.file_size() - 4 && !memcmp( rom.begin() + size, "DATA", 4 ) ) warning( "Multiple DATA not supported" ); else if ( size < rom.file_size() ) warning( "Extra file data" ); else warning( "Missing file data" ); } */ Rom_set_addr( &this->rom, addr ); this->voice_count_ = osc_count + adpcm_osc_count; static int const types [osc_count + adpcm_osc_count] = { wave_type+0, wave_type+1, wave_type+2, wave_type+3, mixed_type+0, mixed_type+1, mixed_type+2 }; this->voice_types_ = types; Apu_volume( &this->apu, this->gain_ ); Adpcm_volume( &this->adpcm, this->gain_ ); // Setup buffer this->clock_rate_ = 7159091; Buffer_clock_rate( &this->stereo_buf, 7159091 ); RETURN_ERR( Buffer_set_channel_count( &this->stereo_buf, this->voice_count_, this->voice_types_ ) ); this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf ); Sound_set_tempo( this, this->tempo_ ); Sound_mute_voices( this, this->mute_mask_ ); return 0; } // Emulation static void recalc_timer_load( struct Hes_Emu* this ) { this->timer.load = this->timer.raw_load * this->timer_base + 1; } // Hardware void run_until( struct Hes_Emu* this, hes_time_t present ) { while ( this->vdp.next_vbl < present ) this->vdp.next_vbl += this->play_period; hes_time_t elapsed = present - this->timer.last_time; if ( elapsed > 0 ) { if ( this->timer.enabled ) { this->timer.count -= elapsed; if ( this->timer.count <= 0 ) this->timer.count += this->timer.load; } this->timer.last_time = present; } } void write_vdp( struct Hes_Emu* this, int addr, int data ) { switch ( addr ) { case 0: this->vdp.latch = data & 0x1F; break; case 2: if ( this->vdp.latch == 5 ) { /* if ( data & 0x04 ) warning( "Scanline interrupt unsupported" ); */ run_until( this, Cpu_time( &this->cpu ) ); this->vdp.control = data; irq_changed( this ); } /* else { dprintf( "VDP not supported: $%02X <- $%02X\n", vdp.latch, data ); } */ break; case 3: /* dprintf( "VDP MSB not supported: $%02X <- $%02X\n", vdp.latch, data ); */ break; } } void write_mem_( struct Hes_Emu* this, hes_addr_t addr, int data ) { hes_time_t time = Cpu_time( &this->cpu ); if ( (unsigned) (addr - apu_io_addr) < apu_io_size ) { // Avoid going way past end when a long block xfer is writing to I/O space. // Not a problem for other registers below because they don't write to // Blip_Buffer. hes_time_t t = min( time, Cpu_end_time( &this->cpu ) + 8 ); Apu_write_data( &this->apu, t, addr, data ); return; } if ( (unsigned) (addr - adpcm_io_addr) < adpcm_io_size ) { hes_time_t t = min( time, Cpu_end_time( &this->cpu ) + 6 ); Adpcm_write_data( &this->adpcm, t, addr, data ); return; } switch ( addr ) { case 0x0000: case 0x0002: case 0x0003: write_vdp( this, addr, data ); return; case 0x0C00: { run_until( this, time ); this->timer.raw_load = (data & 0x7F) + 1; recalc_timer_load( this ); this->timer.count = this->timer.load; break; } case 0x0C01: data &= 1; if ( this->timer.enabled == data ) return; run_until( this, time ); this->timer.enabled = data; if ( data ) this->timer.count = this->timer.load; break; case 0x1402: run_until( this, time ); this->irq.disables = data; /* if ( (data & 0xF8) && (data & 0xF8) != 0xF8 ) // flag questionable values dprintf( "Int mask: $%02X\n", data ); */ break; case 0x1403: run_until( this, time ); if ( this->timer.enabled ) this->timer.count = this->timer.load; this->timer.fired = false; break; #ifndef NDEBUG case 0x1000: // I/O port case 0x0402: // palette case 0x0403: case 0x0404: case 0x0405: return; default: /* dprintf( "unmapped write $%04X <- $%02X\n", addr, data ); */ return; #endif } irq_changed( this ); } int read_mem_( struct Hes_Emu* this, hes_addr_t addr ) { hes_time_t time = Cpu_time( &this->cpu ); addr &= page_size - 1; switch ( addr ) { case 0x0000: if ( this->irq.vdp > time ) return 0; this->irq.vdp = future_time; run_until( this, time ); irq_changed( this ); return 0x20; /* case 0x0002: case 0x0003: dprintf( "VDP read not supported: %d\n", addr ); return 0; */ case 0x0C01: //return timer.enabled; // TODO: remove? case 0x0C00: run_until( this, time ); /* dprintf( "Timer count read\n" ); */ return (unsigned) (this->timer.count - 1) / this->timer_base; case 0x1402: return this->irq.disables; case 0x1403: { int status = 0; if ( this->irq.timer <= time ) status |= timer_mask; if ( this->irq.vdp <= time ) status |= vdp_mask; return status; } case 0x180A: case 0x180B: case 0x180C: case 0x180D: return Adpcm_read_data( &this->adpcm, time, addr ); #ifndef NDEBUG case 0x1000: // I/O port //case 0x180C: // CD-ROM //case 0x180D: break; /* default: dprintf( "unmapped read $%04X\n", addr ); */ #endif } return unmapped; } void irq_changed( struct Hes_Emu* this ) { hes_time_t present = Cpu_time( &this->cpu ); if ( this->irq.timer > present ) { this->irq.timer = future_time; if ( this->timer.enabled && !this->timer.fired ) this->irq.timer = present + this->timer.count; } if ( this->irq.vdp > present ) { this->irq.vdp = future_time; if ( this->vdp.control & 0x08 ) this->irq.vdp = this->vdp.next_vbl; } hes_time_t time = future_time; if ( !(this->irq.disables & timer_mask) ) time = this->irq.timer; if ( !(this->irq.disables & vdp_mask) ) time = min( time, this->irq.vdp ); Cpu_set_irq_time( &this->cpu, time ); } int cpu_done( struct Hes_Emu* this ) { check( Cpu_time( &this->cpu ) >= Cpu_end_time( &this->cpu ) || (!(this->cpu.r.flags & i_flag_mask) && Cpu_time( &this->cpu ) >= Cpu_irq_time( &this->cpu )) ); if ( !(this->cpu.r.flags & i_flag_mask) ) { hes_time_t present = Cpu_time( &this->cpu ); if ( this->irq.timer <= present && !(this->irq.disables & timer_mask) ) { this->timer.fired = true; this->irq.timer = future_time; irq_changed( this ); // overkill, but not worth writing custom code return 0x0A; } if ( this->irq.vdp <= present && !(this->irq.disables & vdp_mask) ) { // work around for bugs with music not acknowledging VDP //run_until( present ); //irq.vdp = cpu.future_time; //irq_changed(); return 0x08; } } return -1; } static void adjust_time( hes_time_t* time, hes_time_t delta ) { if ( *time < future_time ) { *time -= delta; if ( *time < 0 ) *time = 0; } } static blargg_err_t end_frame( struct Hes_Emu* this, hes_time_t duration ) { /* if ( run_cpu( this, duration ) ) warning( "Emulation error (illegal instruction)" ); */ run_cpu( this, duration ); check( Cpu_time( &this->cpu ) >= duration ); //check( time() - duration < 20 ); // Txx instruction could cause going way over run_until( this, duration ); // end time frame this->timer.last_time -= duration; this->vdp.next_vbl -= duration; Cpu_end_frame( &this->cpu, duration ); adjust_time( &this->irq.timer, duration ); adjust_time( &this->irq.vdp, duration ); Apu_end_frame( &this->apu, duration ); Adpcm_end_frame( &this->adpcm, duration ); return 0; } static blargg_err_t run_clocks( struct Hes_Emu* this, blip_time_t* duration_ ) { return end_frame( this, *duration_ ); } blargg_err_t play_( void *emu, int count, sample_t out [] ) { struct Hes_Emu* this = (struct Hes_Emu*) emu; int remain = count; while ( remain ) { Buffer_disable_immediate_removal( &this->stereo_buf ); remain -= Buffer_read_samples( &this->stereo_buf, &out [count - remain], remain ); if ( remain ) { if ( this->buf_changed_count != Buffer_channels_changed_count( &this->stereo_buf ) ) { this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf ); // Remute voices Sound_mute_voices( this, this->mute_mask_ ); } int msec = Buffer_length( &this->stereo_buf ); blip_time_t clocks_emulated = msec * this->clock_rate_ / 1000 - 100; RETURN_ERR( run_clocks( this, &clocks_emulated ) ); assert( clocks_emulated ); Buffer_end_frame( &this->stereo_buf, clocks_emulated ); } } return 0; } // Music emu blargg_err_t Hes_set_sample_rate( struct Hes_Emu* this, int rate ) { require( !this->sample_rate_ ); // sample rate can't be changed once set Buffer_init( &this->stereo_buf ); RETURN_ERR( Buffer_set_sample_rate( &this->stereo_buf, rate, 1000 / 20 ) ); // Set bass frequency Buffer_bass_freq( &this->stereo_buf, 60 ); this->sample_rate_ = rate; RETURN_ERR( track_init( &this->track_filter, this ) ); this->tfilter.max_silence = 6 * stereo * this->sample_rate_; return 0; } void Sound_mute_voice( struct Hes_Emu* this, int index, bool mute ) { require( (unsigned) index < (unsigned) this->voice_count_ ); int bit = 1 << index; int mask = this->mute_mask_ | bit; if ( !mute ) mask ^= bit; Sound_mute_voices( this, mask ); } void Sound_mute_voices( struct Hes_Emu* this, int mask ) { require( this->sample_rate_ ); // sample rate must be set first this->mute_mask_ = mask; // Set adpcm voice struct channel_t ch = Buffer_channel( &this->stereo_buf, this->voice_count_ ); if ( mask & (1 << this->voice_count_ ) ) Adpcm_set_output( &this->adpcm, 0, 0, 0, 0 ); else Adpcm_set_output( &this->adpcm, 0, ch.center, ch.left, ch.right ); // Set apu voices int i = this->voice_count_ - 1; for ( ; i--; ) { if ( mask & (1 << i) ) { Apu_osc_output( &this->apu, i, 0, 0, 0 ); } else { struct channel_t ch = Buffer_channel( &this->stereo_buf, i ); assert( (ch.center && ch.left && ch.right) || (!ch.center && !ch.left && !ch.right) ); // all or nothing Apu_osc_output( &this->apu, i, ch.center, ch.left, ch.right ); } } } void Sound_set_tempo( struct Hes_Emu* this, int t ) { require( this->sample_rate_ ); // sample rate must be set first int const min = (int)(FP_ONE_TEMPO*0.02); int const max = (int)(FP_ONE_TEMPO*4.00); if ( t < min ) t = min; if ( t > max ) t = max; this->play_period = (hes_time_t) ((period_60hz*FP_ONE_TEMPO) / t); this->timer_base = (int) ((1024*FP_ONE_TEMPO) / t); recalc_timer_load( this ); this->tempo_ = t; } blargg_err_t Hes_start_track( struct Hes_Emu* this, int track ) { clear_track_vars( this ); // Remap track if playlist available if ( this->m3u.size > 0 ) { struct entry_t* e = &this->m3u.entries[track]; track = e->track; } this->current_track_ = track; Buffer_clear( &this->stereo_buf ); memset( this->ram, 0, sizeof this->ram ); // some HES music relies on zero fill memset( this->sgx, 0, sizeof this->sgx ); Apu_reset( &this->apu ); Adpcm_reset( &this->adpcm ); Cpu_reset( &this->cpu ); unsigned i; for ( i = 0; i < sizeof this->header.banks; i++ ) set_mmr( this, i, this->header.banks [i] ); set_mmr( this, page_count, 0xFF ); // unmapped beyond end of address space this->irq.disables = timer_mask | vdp_mask; this->irq.timer = future_time; this->irq.vdp = future_time; this->timer.enabled = false; this->timer.raw_load= 0x80; this->timer.count = this->timer.load; this->timer.fired = false; this->timer.last_time = 0; this->vdp.latch = 0; this->vdp.control = 0; this->vdp.next_vbl = 0; this->ram [0x1FF] = (idle_addr - 1) >> 8; this->ram [0x1FE] = (idle_addr - 1) & 0xFF; this->cpu.r.sp = 0xFD; this->cpu.r.pc = get_le16( this->header.init_addr ); this->cpu.r.a = track; recalc_timer_load( this ); // convert filter times to samples struct setup_t s = this->tfilter; s.max_initial *= this->sample_rate_ * stereo; #ifdef GME_DISABLE_SILENCE_LOOKAHEAD s.lookahead = 1; #endif track_setup( &this->track_filter, &s ); return track_start( &this->track_filter ); } // Tell/Seek static int msec_to_samples( int msec, int sample_rate ) { int sec = msec / 1000; msec -= sec * 1000; return (sec * sample_rate + msec * sample_rate / 1000) * stereo; } int Track_tell( struct Hes_Emu* this ) { int rate = this->sample_rate_ * stereo; int sec = track_sample_count( &this->track_filter ) / rate; return sec * 1000 + (track_sample_count( &this->track_filter ) - sec * rate) * 1000 / rate; } blargg_err_t Track_seek( struct Hes_Emu* this, int msec ) { int time = msec_to_samples( msec, this->sample_rate_ ); if ( time < track_sample_count( &this->track_filter ) ) RETURN_ERR( Hes_start_track( this, this->current_track_ ) ); return Track_skip( this, time - track_sample_count( &this->track_filter ) ); } blargg_err_t skip_( void* emu, int count ) { struct Hes_Emu* this = (struct Hes_Emu*) emu; // for long skip, mute sound const int threshold = 32768; if ( count > threshold ) { int saved_mute = this->mute_mask_; Sound_mute_voices( this, ~0 ); int n = count - threshold/2; n &= ~(2048-1); // round to multiple of 2048 count -= n; RETURN_ERR( skippy_( &this->track_filter, n ) ); Sound_mute_voices( this, saved_mute ); } return skippy_( &this->track_filter, count ); } blargg_err_t Track_skip( struct Hes_Emu* this, int count ) { require( this->current_track_ >= 0 ); // start_track() must have been called already return track_skip( &this->track_filter, count ); } void Track_set_fade( struct Hes_Emu* this, int start_msec, int length_msec ) { track_set_fade( &this->track_filter, msec_to_samples( start_msec, this->sample_rate_ ), length_msec * this->sample_rate_ / (1000 / stereo) ); } blargg_err_t Hes_play( struct Hes_Emu* this, int out_count, sample_t* out ) { require( this->current_track_ >= 0 ); require( out_count % stereo == 0 ); return track_play( &this->track_filter, out_count, out ); }