/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2006 by Barry Wardell * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "cpu.h" #include "lcd.h" #include "kernel.h" #include "system.h" /** Initialized in lcd_init_device() **/ /* Is the power turned on? */ static bool power_on; /* Is the display turned on? */ static bool display_on; /* Amount of vertical offset. Used for flip offset correction/detection. */ static int y_offset; /* Reverse flag. Must be remembered when display is turned off. */ static unsigned short disp_control_rev; /* Contrast setting << 8 */ static int lcd_contrast; static unsigned lcd_yuv_options NOCACHEBSS_ATTR = 0; /* Forward declarations */ static void lcd_display_off(void); /* register defines for the Renesas HD66773R */ #define R_START_OSC 0x00 #define R_DEVICE_CODE_READ 0x00 #define R_DRV_OUTPUT_CONTROL 0x01 #define R_DRV_AC_CONTROL 0x02 #define R_POWER_CONTROL1 0x03 #define R_POWER_CONTROL2 0x04 #define R_ENTRY_MODE 0x05 #define R_COMPARE_REG 0x06 #define R_DISP_CONTROL 0x07 #define R_FRAME_CYCLE_CONTROL 0x0b #define R_POWER_CONTROL3 0x0c #define R_POWER_CONTROL4 0x0d #define R_POWER_CONTROL5 0x0e #define R_GATE_SCAN_START_POS 0x0f #define R_VERT_SCROLL_CONTROL 0x11 #define R_1ST_SCR_DRV_POS 0x14 #define R_2ND_SCR_DRV_POS 0x15 #define R_HORIZ_RAM_ADDR_POS 0x16 #define R_VERT_RAM_ADDR_POS 0x17 #define R_RAM_WRITE_DATA_MASK 0x20 #define R_RAM_ADDR_SET 0x21 #define R_WRITE_DATA_2_GRAM 0x22 #define R_RAM_READ_DATA 0x22 #define R_GAMMA_FINE_ADJ_POS1 0x30 #define R_GAMMA_FINE_ADJ_POS2 0x31 #define R_GAMMA_FINE_ADJ_POS3 0x32 #define R_GAMMA_GRAD_ADJ_POS 0x33 #define R_GAMMA_FINE_ADJ_NEG1 0x34 #define R_GAMMA_FINE_ADJ_NEG2 0x35 #define R_GAMMA_FINE_ADJ_NEG3 0x36 #define R_GAMMA_GRAD_ADJ_NEG 0x37 #define R_GAMMA_AMP_ADJ_POS 0x3a #define R_GAMMA_AMP_ADJ_NEG 0x3b static inline void lcd_wait_write(void) { while (LCD2_PORT & LCD2_BUSY_MASK); } /* Send command */ static inline void lcd_send_cmd(unsigned v) { lcd_wait_write(); LCD2_PORT = LCD2_CMD_MASK; LCD2_PORT = LCD2_CMD_MASK | v; } /* Send 16-bit data */ static inline void lcd_send_data(unsigned v) { lcd_wait_write(); LCD2_PORT = LCD2_DATA_MASK | (v >> 8); /* Send MSB first */ LCD2_PORT = LCD2_DATA_MASK | (v & 0xff); } /* Send 16-bit data byte-swapped. Only needed until we can use block transfer. */ static inline void lcd_send_data_swapped(unsigned v) { lcd_wait_write(); LCD2_PORT = LCD2_DATA_MASK | (v & 0xff); /* Send LSB first */ LCD2_PORT = LCD2_DATA_MASK | (v >> 8); } /* Write value to register */ static void lcd_write_reg(int reg, int val) { lcd_send_cmd(reg); lcd_send_data(val); } /*** hardware configuration ***/ int lcd_default_contrast(void) { return DEFAULT_CONTRAST_SETTING; } void lcd_set_contrast(int val) { /* Clamp val in range 0-14, 16-30 */ if (val < 1) val = 0; else if (val <= 15) --val; else if (val > 30) val = 30; lcd_contrast = val << 8; if (!power_on) return; /* VCOMG=1, VDV4-0=xxxxx, VCM4-0=11000 */ lcd_write_reg(R_POWER_CONTROL5, 0x2018 | lcd_contrast); } void lcd_set_invert_display(bool yesno) { if (yesno == (disp_control_rev == 0x0000)) return; disp_control_rev = yesno ? 0x0000 : 0x0004; if (!display_on) return; /* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=1, REV=x, D1-0=11 */ lcd_write_reg(R_DISP_CONTROL, 0x0033 | disp_control_rev); } /* turn the display upside down (call lcd_update() afterwards) */ void lcd_set_flip(bool yesno) { if (yesno == (y_offset != 0)) return; /* The LCD controller is 132x160 while the LCD itself is 128x160, so we need * to shift the origin by 4 when we flip the LCD */ y_offset = yesno ? 4 : 0; if (!power_on) return; /* SCN4-0=000x0 (G1/G160) */ lcd_write_reg(R_GATE_SCAN_START_POS, yesno ? 0x0002 : 0x0000); /* SM=0, GS=x, SS=x, NL4-0=10011 (G1-G160) */ lcd_write_reg(R_DRV_OUTPUT_CONTROL, yesno ? 0x0213 : 0x0113); } /* LCD init */ void lcd_init_device(void) { CLCD_CLOCK_SRC |= 0xc0000000; /* Set LCD interface clock to PLL */ power_on = true; display_on = true; y_offset = 0; disp_control_rev = 0x0004; lcd_contrast = DEFAULT_CONTRAST_SETTING << 8; } static void lcd_power_on(void) { /* Be sure standby bit is clear. */ /* BT2-0=000, DC2-0=000, AP2-0=000, SLP=0, STB=0 */ lcd_write_reg(R_POWER_CONTROL1, 0x0000); /** Power ON Sequence **/ /* Per datasheet Rev.1.10, Jun.21.2003, p. 99 */ lcd_write_reg(R_START_OSC, 0x0001); /* Start Oscillation */ /* 10ms or more for oscillation circuit to stabilize */ sleep(HZ/50); /* Instruction (1) for power setting; VC2-0, VRH3-0, CAD, VRL3-0, VCM4-0, VDV4-0 */ /* VC2-0=001 */ lcd_write_reg(R_POWER_CONTROL3, 0x0001); /* VRL3-0=0100, PON=0, VRH3-0=0001 */ lcd_write_reg(R_POWER_CONTROL4, 0x0401); /* CAD=1 */ lcd_write_reg(R_POWER_CONTROL2, 0x8000); /* VCOMG=0, VDV4-0=xxxxx (19), VCM4-0=11000 */ lcd_write_reg(R_POWER_CONTROL5, 0x0018 | lcd_contrast); /* Instruction (2) for power setting; BT2-0, DC2-0, AP2-0 */ /* BT2-0=000, DC2-0=001, AP2-0=011, SLP=0, STB=0 */ lcd_write_reg(R_POWER_CONTROL1, 0x002c); /* Instruction (3) for power setting; VCOMG = "1" */ /* VCOMG=1, VDV4-0=xxxxx (19), VCM4-0=11000 */ lcd_write_reg(R_POWER_CONTROL5, 0x2018 | lcd_contrast); /* 40ms or more; time for step-up circuits 1,2 to stabilize */ sleep(HZ/25); /* Instruction (4) for power setting; PON = "1" */ /* VRL3-0=0100, PON=1, VRH3-0=0001 */ lcd_write_reg(R_POWER_CONTROL4, 0x0411); /* 40ms or more; time for step-up circuit 4 to stabilize */ sleep(HZ/25); /* Instructions for other mode settings (in register order). */ /* SM=0, GS=x, SS=0, NL4-0=10011 (G1-G160)*/ lcd_write_reg(R_DRV_OUTPUT_CONTROL, y_offset ? 0x0013 : 0x0113); /* different to X5 */ /* FLD1-0=01 (1 field), B/C=1, EOR=1 (C-pat), NW5-0=000000 (1 row) */ lcd_write_reg(R_DRV_AC_CONTROL, 0x0700); /* DIT=0, BGR=1, HWM=0, I/D1-0=10, AM=1, LG2-0=000 */ lcd_write_reg(R_ENTRY_MODE, 0x1028); /* different to X5 */ /* CP15-0=0000000000000000 */ lcd_write_reg(R_COMPARE_REG, 0x0000); /* NO1-0=01, SDT1-0=00, EQ1-0=00, DIV1-0=00, RTN3-00000 */ lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x4000); /* SCN4-0=000x0 (G1/G160) */ /* lcd_write_reg(R_GATE_SCAN_START_POS, y_offset ? 0x0000 : 0x0002); */ /* VL7-0=0x00 */ lcd_write_reg(R_VERT_SCROLL_CONTROL, 0x0000); /* SE17-10(End)=0x9f (159), SS17-10(Start)=0x00 */ lcd_write_reg(R_1ST_SCR_DRV_POS, 0x9f00); /* SE27-20(End)=0x5c (92), SS27-20(Start)=0x00 */ lcd_write_reg(R_2ND_SCR_DRV_POS, 0x5c00); /* HEA7-0=7f, HSA7-0=00 */ lcd_write_reg(R_HORIZ_RAM_ADDR_POS, 0x7f00); /* PKP12-10=0x0, PKP02-00=0x0 */ lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0003); /* PKP32-30=0x4, PKP22-20=0x0 */ lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0400); /* PKP52-50=0x4, PKP42-40=0x7 */ lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0407); /* PRP12-10=0x3, PRP02-00=0x5 */ lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0305); /* PKN12-10=0x0, PKN02-00=0x3 */ lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0003); /* PKN32-30=0x7, PKN22-20=0x4 */ lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0704); /* PKN52-50=0x4, PRN42-40=0x7 */ lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0407); /* PRN12-10=0x5, PRN02-00=0x3 */ lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0503); /* VRP14-10=0x14, VRP03-00=0x09 */ lcd_write_reg(R_GAMMA_AMP_ADJ_POS, 0x1409); /* VRN14-00=0x06, VRN03-00=0x02 */ lcd_write_reg(R_GAMMA_AMP_ADJ_NEG, 0x0602); /* 100ms or more; time for step-up circuits to stabilize */ sleep(HZ/10); power_on = true; } static void lcd_power_off(void) { /* Display must be off first */ if (display_on) lcd_display_off(); power_on = false; /** Power OFF sequence **/ /* Per datasheet Rev.1.10, Jun.21.2003, p. 99 */ /* Step-up1 halt setting bit */ /* BT2-0=110, DC2-0=001, AP2-0=011, SLP=0, STB=0 */ lcd_write_reg(R_POWER_CONTROL1, 0x062c); /* Step-up3,4 halt setting bit */ /* VRL3-0=0100, PON=0, VRH3-0=0001 */ lcd_write_reg(R_POWER_CONTROL4, 0x0401); /* VCOMG=0, VDV4-0=10011, VCM4-0=11000 */ lcd_write_reg(R_POWER_CONTROL5, 0x0018 | lcd_contrast); /* Wait 100ms or more */ sleep(HZ/10); /* Step-up2,amp halt setting bit */ /* BT2-0=000, DC2-0=000, AP2-0=000, SLP=0, STB=0 */ lcd_write_reg(R_POWER_CONTROL1, 0x0000); } static void lcd_display_on(void) { /* Be sure power is on first */ if (!power_on) lcd_power_on(); /** Display ON Sequence **/ /* Per datasheet Rev.1.10, Jun.21.2003, p. 97 */ /* PT1-0=00, VLE2-1=00, SPT=0, GON=0, DTE=0, REV=0, D1-0=01 */ lcd_write_reg(R_DISP_CONTROL, 0x0001); sleep(HZ/25); /* Wait 2 frames or more */ /* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=0, REV=x, D1-0=01 */ lcd_write_reg(R_DISP_CONTROL, 0x0021 | disp_control_rev); /* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=0, REV=x, D1-0=11 */ lcd_write_reg(R_DISP_CONTROL, 0x0023 | disp_control_rev); sleep(HZ/25); /* Wait 2 frames or more */ /* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=1, REV=x, D1-0=11 */ lcd_write_reg(R_DISP_CONTROL, 0x0033 | disp_control_rev); display_on = true; } static void lcd_display_off(void) { display_on = false; /** Display OFF sequence **/ /* Per datasheet Rev.1.10, Jun.21.2003, p. 97 */ /* EQ1-0=00 already */ /* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=1, REV=x, D1-0=10 */ lcd_write_reg(R_DISP_CONTROL, 0x0032 | disp_control_rev); sleep(HZ/25); /* Wait 2 frames or more */ /* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=0, REV=x, D1-0=10 */ lcd_write_reg(R_DISP_CONTROL, 0x0022 | disp_control_rev); sleep(HZ/25); /* Wait 2 frames or more */ /* PT1-0=00, VLE2-1=00, SPT=0, GON=0, DTE=0, REV=0, D1-0=00 */ lcd_write_reg(R_DISP_CONTROL, 0x0000); } void lcd_enable(bool on) { if (on == display_on) return; if (on) { lcd_display_on(); /* Probably out of sync and we don't wanna pepper the code with lcd_update() calls for this. */ lcd_update(); } else { lcd_display_off(); } } bool lcd_enabled(void) { return display_on; } void lcd_sleep(void) { if (power_on) lcd_power_off(); /* Set standby mode */ /* BT2-0=000, DC2-0=000, AP2-0=000, SLP=0, STB=1 */ lcd_write_reg(R_POWER_CONTROL1, 0x0001); } /*** update functions ***/ void lcd_yuv_set_options(unsigned options) { lcd_yuv_options = options; } /* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */ extern void lcd_write_yuv420_lines(unsigned char const * const src[3], int width, int stride); extern void lcd_write_yuv420_lines_odither(unsigned char const * const src[3], int width, int stride, int x_screen, /* To align dither pattern */ int y_screen); /* Performance function to blit a YUV bitmap directly to the LCD */ void lcd_blit_yuv(unsigned char * const src[3], int src_x, int src_y, int stride, int x, int y, int width, int height) { const unsigned char *yuv_src[3]; const unsigned char *ysrc_max; int y0; int options; if (!display_on) return; width &= ~1; height &= ~1; /* calculate the drawing region */ /* The 20GB LCD is actually 128x160 but rotated 90 degrees so the origin * is actually the bottom left and horizontal and vertical are swapped. * Rockbox expects the origin to be the top left so we need to use * 127 - y instead of just y */ /* max vert << 8 | start vert */ lcd_write_reg(R_VERT_RAM_ADDR_POS, ((x + width - 1) << 8) | x); y0 = LCD_HEIGHT - 1 - y + y_offset; /* DIT=0, BGR=1, HWM=0, I/D1-0=10, AM=0, LG2-0=000 */ lcd_write_reg(R_ENTRY_MODE, 0x1020); yuv_src[0] = src[0] + src_y * stride + src_x; yuv_src[1] = src[1] + (src_y * stride >> 2) + (src_x >> 1); yuv_src[2] = src[2] + (yuv_src[1] - src[1]); ysrc_max = yuv_src[0] + height * stride; options = lcd_yuv_options; do { /* max horiz << 8 | start horiz */ lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (y0 << 8) | (y0 - 1)); /* position cursor (set AD0-AD15) */ /* start vert << 8 | start horiz */ lcd_write_reg(R_RAM_ADDR_SET, (x << 8) | y0); /* start drawing */ lcd_send_cmd(R_WRITE_DATA_2_GRAM); if (options & LCD_YUV_DITHER) { lcd_write_yuv420_lines_odither(yuv_src, width, stride, x, y); y -= 2; } else { lcd_write_yuv420_lines(yuv_src, width, stride); } y0 -= 2; yuv_src[0] += stride << 1; yuv_src[1] += stride >> 1; yuv_src[2] += stride >> 1; } while (yuv_src[0] < ysrc_max); /* DIT=0, BGR=1, HWM=0, I/D1-0=10, AM=1, LG2-0=000 */ lcd_write_reg(R_ENTRY_MODE, 0x1028); } /* Update a fraction of the display. */ void lcd_update_rect(int x0, int y0, int width, int height) { int x1, y1; unsigned short *addr; if (!display_on) return; /* calculate the drawing region */ y1 = (y0 + height) - 1; /* max vert */ x1 = (x0 + width) - 1; /* max horiz */ if(x1 >= LCD_WIDTH) x1 = LCD_WIDTH - 1; if (x1 <= 0) return; /* nothing left to do, 0 is harmful to lcd_write_data() */ if(y1 >= LCD_HEIGHT) y1 = LCD_HEIGHT-1; /* The 20GB LCD is actually 128x160 but rotated 90 degrees so the origin * is actually the bottom left and horizontal and vertical are swapped. * Rockbox expects the origin to be the top left so we need to use * 127 - y instead of just y */ /* max horiz << 8 | start horiz */ lcd_send_cmd(R_HORIZ_RAM_ADDR_POS); lcd_send_data( (((LCD_HEIGHT-1)-y0+y_offset) << 8) | ((LCD_HEIGHT-1)-y1+y_offset) ); /* max vert << 8 | start vert */ lcd_send_cmd(R_VERT_RAM_ADDR_POS); lcd_send_data((x1 << 8) | x0); /* position cursor (set AD0-AD15) */ /* start vert << 8 | start horiz */ lcd_send_cmd(R_RAM_ADDR_SET); lcd_send_data( (x0 << 8) | ((LCD_HEIGHT-1)-y0+y_offset) ); /* start drawing */ lcd_send_cmd(R_WRITE_DATA_2_GRAM); addr = (unsigned short*)&lcd_framebuffer[y0][x0]; int c, r; /* for each row */ for (r = 0; r < height; r++) { /* for each column */ for (c = 0; c < width; c++) { /* output 1 pixel */ lcd_send_data_swapped(*addr++); } addr += LCD_WIDTH - width; } } /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_update(void) { lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT); }