/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (c) 2008 by Michael Sevakis * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "system.h" #include "cpu.h" #include "gpio-imx31.h" #include "mc13783.h" #include "mc13783-target.h" #include "debug.h" #include "kernel.h" extern const struct mc13783_event mc13783_events[MC13783_NUM_EVENTS]; extern struct spi_node mc13783_spi; /* PMIC event service data */ static int mc13783_thread_stack[DEFAULT_STACK_SIZE/sizeof(int)]; static const char *mc13783_thread_name = "pmic"; static struct semaphore mc13783_svc_wake; /* Synchronous thread communication objects */ static struct mutex mc13783_spi_mutex; static struct semaphore mc13783_spi_complete; /* Tracking for which interrupts are enabled */ static uint32_t pmic_int_enabled[2] = { 0x00000000, 0x00000000 }; static const unsigned char pmic_intm_regs[2] = { MC13783_INTERRUPT_MASK0, MC13783_INTERRUPT_MASK1 }; static const unsigned char pmic_ints_regs[2] = { MC13783_INTERRUPT_STATUS0, MC13783_INTERRUPT_STATUS1 }; static volatile unsigned int mc13783_thread_id = 0; static void mc13783_xfer_complete_cb(struct spi_transfer_desc *trans); /* Transfer descriptor for synchronous reads and writes */ static struct spi_transfer_desc mc13783_transfer = { .node = &mc13783_spi, .txbuf = NULL, .rxbuf = NULL, .count = 0, .callback = mc13783_xfer_complete_cb, .next = NULL, }; /* Called when a transfer is finished and data is ready/written */ static void mc13783_xfer_complete_cb(struct spi_transfer_desc *xfer) { if (xfer->count != 0) return; semaphore_release(&mc13783_spi_complete); } static inline bool wait_for_transfer_complete(void) { return semaphore_wait(&mc13783_spi_complete, HZ*2) == OBJ_WAIT_SUCCEEDED && mc13783_transfer.count == 0; } static void mc13783_interrupt_thread(void) { uint32_t pending[2]; /* Enable mc13783 GPIO event */ gpio_enable_event(MC13783_EVENT_ID); while (1) { const struct mc13783_event *event, *event_last; semaphore_wait(&mc13783_svc_wake, TIMEOUT_BLOCK); if (mc13783_thread_id == 0) break; mc13783_read_regs(pmic_ints_regs, pending, 2); /* Only clear interrupts being dispatched */ pending[0] &= pmic_int_enabled[0]; pending[1] &= pmic_int_enabled[1]; mc13783_write_regs(pmic_ints_regs, pending, 2); /* Whatever is going to be serviced in this loop has been * acknowledged. Reenable interrupt and if anything was still * pending or became pending again, another signal will be * generated. */ bitset32(&MC13783_GPIO_IMR, 1ul << MC13783_GPIO_LINE); event = mc13783_events; event_last = event + MC13783_NUM_EVENTS; /* .count is surely expected to be > 0 */ do { enum mc13783_event_sets set = event->set; uint32_t pnd = pending[set]; uint32_t mask = event->mask; if (pnd & mask) { event->callback(); pnd &= ~mask; pending[set] = pnd; } if ((pending[0] | pending[1]) == 0) break; /* Terminate early if nothing more to service */ } while (++event < event_last); } gpio_disable_event(MC13783_EVENT_ID); } /* GPIO interrupt handler for mc13783 */ void mc13783_event(void) { /* Mask the interrupt (unmasked when PMIC thread services it). */ bitclr32(&MC13783_GPIO_IMR, 1ul << MC13783_GPIO_LINE); MC13783_GPIO_ISR = (1ul << MC13783_GPIO_LINE); semaphore_release(&mc13783_svc_wake); } void INIT_ATTR mc13783_init(void) { /* Serial interface must have been initialized first! */ semaphore_init(&mc13783_svc_wake, 1, 0); mutex_init(&mc13783_spi_mutex); semaphore_init(&mc13783_spi_complete, 1, 0); /* Enable the PMIC SPI module */ spi_enable_module(&mc13783_spi); /* Mask any PMIC interrupts for now - modules will enable them as * required */ mc13783_write(MC13783_INTERRUPT_MASK0, 0xffffff); mc13783_write(MC13783_INTERRUPT_MASK1, 0xffffff); MC13783_GPIO_ISR = (1ul << MC13783_GPIO_LINE); mc13783_thread_id = create_thread(mc13783_interrupt_thread, mc13783_thread_stack, sizeof(mc13783_thread_stack), 0, mc13783_thread_name IF_PRIO(, PRIORITY_REALTIME) IF_COP(, CPU)); } void mc13783_close(void) { unsigned int thread_id = mc13783_thread_id; if (thread_id == 0) return; mc13783_thread_id = 0; semaphore_release(&mc13783_svc_wake); thread_wait(thread_id); spi_disable_module(&mc13783_spi); } bool mc13783_enable_event(enum mc13783_event_ids id) { const struct mc13783_event * const event = &mc13783_events[id]; int set = event->set; uint32_t mask = event->mask; mutex_lock(&mc13783_spi_mutex); pmic_int_enabled[set] |= mask; mc13783_clear(pmic_intm_regs[set], mask); mutex_unlock(&mc13783_spi_mutex); return true; } void mc13783_disable_event(enum mc13783_event_ids id) { const struct mc13783_event * const event = &mc13783_events[id]; int set = event->set; uint32_t mask = event->mask; mutex_lock(&mc13783_spi_mutex); pmic_int_enabled[set] &= ~mask; mc13783_set(pmic_intm_regs[set], mask); mutex_unlock(&mc13783_spi_mutex); } uint32_t mc13783_set(unsigned address, uint32_t bits) { uint32_t data; mutex_lock(&mc13783_spi_mutex); data = mc13783_read(address); if (data != MC13783_DATA_ERROR) mc13783_write(address, data | bits); mutex_unlock(&mc13783_spi_mutex); return data; } uint32_t mc13783_clear(unsigned address, uint32_t bits) { uint32_t data; mutex_lock(&mc13783_spi_mutex); data = mc13783_read(address); if (data != MC13783_DATA_ERROR) mc13783_write(address, data & ~bits); mutex_unlock(&mc13783_spi_mutex); return data; } int mc13783_write(unsigned address, uint32_t data) { uint32_t packet; int i; if (address >= MC13783_NUM_REGS) return -1; packet = (1 << 31) | (address << 25) | (data & 0xffffff); mutex_lock(&mc13783_spi_mutex); mc13783_transfer.txbuf = &packet; mc13783_transfer.rxbuf = NULL; mc13783_transfer.count = 1; i = -1; if (spi_transfer(&mc13783_transfer) && wait_for_transfer_complete()) i = 1 - mc13783_transfer.count; mutex_unlock(&mc13783_spi_mutex); return i; } uint32_t mc13783_write_masked(unsigned address, uint32_t data, uint32_t mask) { uint32_t old; mutex_lock(&mc13783_spi_mutex); old = mc13783_read(address); if (old != MC13783_DATA_ERROR) { data = (old & ~mask) | (data & mask); if (mc13783_write(address, data) != 1) old = MC13783_DATA_ERROR; } mutex_unlock(&mc13783_spi_mutex); return old; } uint32_t mc13783_read(unsigned address) { uint32_t packet; if (address >= MC13783_NUM_REGS) return MC13783_DATA_ERROR; packet = address << 25; mutex_lock(&mc13783_spi_mutex); mc13783_transfer.txbuf = &packet; mc13783_transfer.rxbuf = &packet; mc13783_transfer.count = 1; if (!spi_transfer(&mc13783_transfer) || !wait_for_transfer_complete()) packet = MC13783_DATA_ERROR; mutex_unlock(&mc13783_spi_mutex); return packet; } int mc13783_read_regs(const unsigned char *regs, uint32_t *buffer, int count) { int i; for (i = 0; i < count; i++) { unsigned reg = regs[i]; if (reg >= MC13783_NUM_REGS) return -1; buffer[i] = reg << 25; } mutex_lock(&mc13783_spi_mutex); mc13783_transfer.txbuf = buffer; mc13783_transfer.rxbuf = buffer; mc13783_transfer.count = count; i = -1; if (spi_transfer(&mc13783_transfer) && wait_for_transfer_complete()) i = count - mc13783_transfer.count; mutex_unlock(&mc13783_spi_mutex); return i; } int mc13783_write_regs(const unsigned char *regs, uint32_t *buffer, int count) { int i; for (i = 0; i < count; i++) { unsigned reg = regs[i]; if (reg >= MC13783_NUM_REGS) return -1; buffer[i] = (1 << 31) | (reg << 25) | (buffer[i] & 0xffffff); } mutex_lock(&mc13783_spi_mutex); mc13783_transfer.txbuf = buffer; mc13783_transfer.rxbuf = NULL; mc13783_transfer.count = count; i = -1; if (spi_transfer(&mc13783_transfer) && wait_for_transfer_complete()) i = count - mc13783_transfer.count; mutex_unlock(&mc13783_spi_mutex); return i; } #if 0 /* Not needed right now */ bool mc13783_read_async(struct spi_transfer_desc *xfer, const unsigned char *regs, uint32_t *buffer, int count, spi_transfer_cb_fn_type callback) { int i; for (i = 0; i < count; i++) { unsigned reg = regs[i]; if (reg >= MC13783_NUM_REGS) return false; buffer[i] = reg << 25; } xfer->node = &mc13783_spi; xfer->txbuf = buffer; xfer->rxbuf = buffer; xfer->count = count; xfer->callback = callback; xfer->next = NULL; return spi_transfer(xfer); } #endif bool mc13783_write_async(struct spi_transfer_desc *xfer, const unsigned char *regs, uint32_t *buffer, int count, spi_transfer_cb_fn_type callback) { int i; for (i = 0; i < count; i++) { unsigned reg = regs[i]; if (reg >= MC13783_NUM_REGS) return false; buffer[i] = (1 << 31) | (reg << 25) | (buffer[i] & 0xffffff); } xfer->node = &mc13783_spi; xfer->txbuf = buffer; xfer->rxbuf = NULL; xfer->count = count; xfer->callback = callback; xfer->next = NULL; return spi_transfer(xfer); }