/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 by Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "system.h" #include "power.h" #include "string.h" #include "usb.h" #include "system-target.h" #include "power-imx233.h" #include "pinctrl-imx233.h" #include "fmradio_i2c.h" #include "rtc-imx233.h" #include "regs/power.h" #define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__10mA (1 << 0) #define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__20mA (1 << 1) #define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__50mA (1 << 2) #define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__100mA (1 << 3) #define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__200mA (1 << 4) #define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__400mA (1 << 5) #define BV_POWER_CHARGE_BATTCHRG_I__10mA (1 << 0) #define BV_POWER_CHARGE_BATTCHRG_I__20mA (1 << 1) #define BV_POWER_CHARGE_BATTCHRG_I__50mA (1 << 2) #define BV_POWER_CHARGE_BATTCHRG_I__100mA (1 << 3) #define BV_POWER_CHARGE_BATTCHRG_I__200mA (1 << 4) #define BV_POWER_CHARGE_BATTCHRG_I__400mA (1 << 5) #define BV_POWER_CHARGE_STOP_ILIMIT__10mA (1 << 0) #define BV_POWER_CHARGE_STOP_ILIMIT__20mA (1 << 1) #define BV_POWER_CHARGE_STOP_ILIMIT__50mA (1 << 2) #define BV_POWER_CHARGE_STOP_ILIMIT__100mA (1 << 3) #if IMX233_SUBTARGET >= 3700 #define HW_POWER_VDDDCTRL__TRG_STEP 25 /* mV */ #define HW_POWER_VDDDCTRL__TRG_MIN 800 /* mV */ #define HW_POWER_VDDACTRL__TRG_STEP 25 /* mV */ #define HW_POWER_VDDACTRL__TRG_MIN 1500 /* mV */ #define HW_POWER_VDDIOCTRL__TRG_STEP 25 /* mV */ #define HW_POWER_VDDIOCTRL__TRG_MIN 2800 /* mV */ #define HW_POWER_VDDMEMCTRL__TRG_STEP 50 /* mV */ #define HW_POWER_VDDMEMCTRL__TRG_MIN 1700 /* mV */ #else /* don't use the full available range because of the weird encodings for * extreme values which are useless anyway */ #define HW_POWER_VDDDCTRL__TRG_STEP 32 /* mV */ #define HW_POWER_VDDDCTRL__TRG_MIN 1280 /* mV */ #define HW_POWER_VDDDCTRL__TRG_OFF 8 /* below 8, the register value doesn't encode linearly */ #endif #define BV_POWER_MISC_FREQSEL__RES 0 #define BV_POWER_MISC_FREQSEL__20MHz 1 #define BV_POWER_MISC_FREQSEL__24MHz 2 #define BV_POWER_MISC_FREQSEL__19p2MHz 3 #define BV_POWER_MISC_FREQSEL__14p4MHz 4 #define BV_POWER_MISC_FREQSEL__18MHz 5 #define BV_POWER_MISC_FREQSEL__21p6MHz 6 #define BV_POWER_MISC_FREQSEL__17p28MHz 7 struct current_step_bit_t { unsigned current; uint32_t bit; }; /* in decreasing order */ static struct current_step_bit_t g_charger_current_bits[] = { { 400, BV_POWER_CHARGE_BATTCHRG_I__400mA }, { 200, BV_POWER_CHARGE_BATTCHRG_I__200mA }, { 100, BV_POWER_CHARGE_BATTCHRG_I__100mA }, { 50, BV_POWER_CHARGE_BATTCHRG_I__50mA }, { 20, BV_POWER_CHARGE_BATTCHRG_I__20mA }, { 10, BV_POWER_CHARGE_BATTCHRG_I__10mA } }; /* in decreasing order */ static struct current_step_bit_t g_charger_stop_current_bits[] = { { 100, BV_POWER_CHARGE_STOP_ILIMIT__100mA }, { 50, BV_POWER_CHARGE_STOP_ILIMIT__50mA }, { 20, BV_POWER_CHARGE_STOP_ILIMIT__20mA }, { 10, BV_POWER_CHARGE_STOP_ILIMIT__10mA } }; #if IMX233_SUBTARGET >= 3780 /* in decreasing order */ static struct current_step_bit_t g_4p2_charge_limit_bits[] = { { 400, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__400mA }, { 200, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__200mA }, { 100, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__100mA }, { 50, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__50mA }, { 20, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__20mA }, { 10, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__10mA } }; #endif /* FIXME * POWER_STS.VBUSVALID does not reflect the actual vbusvalid value, only * VBUSVALID_STATUS does. Indeed the VBUSVALID field can be locked using * VBUSVALIDPIOLOCK. Some Freescale code suggests locking is required for * proper operation of the USB ARC core. This is problematic though * because it prevents proper usage of the VDD5V irq. * Since we didn't encounter this problem, we never lock VBUSVALID * * WARNING * Using VBUSVALID irq on STMP3700 seems broken, once the irq is fired, * it cannot be acked. Currently fallback to the VDD5V>VDDIO method. */ #if IMX233_SUBTARGET >= 3780 #define USE_VBUSVALID #endif bool imx233_power_usb_detect(void) { #ifdef USE_VBUSVALID return BF_RD(POWER_STS, VBUSVALID); #else return BF_RD(POWER_STS, VDD5V_GT_VDDIO); #endif } void INT_VDD5V(void) { #ifdef USE_VBUSVALID if(BF_RD(POWER_CTRL, VBUSVALID_IRQ)) { if(BF_RD(POWER_STS, VBUSVALID)) usb_insert_int(); else usb_remove_int(); /* reverse polarity */ BF_WR(POWER_CTRL_TOG, POLARITY_VBUSVALID(1)); /* clear int */ BF_CLR(POWER_CTRL, VBUSVALID_IRQ); } #else if(BF_RD(POWER_CTRL, VDD5V_GT_VDDIO_IRQ)) { if(BF_RD(POWER_STS, VDD5V_GT_VDDIO)) usb_insert_int(); else usb_remove_int(); /* reverse polarity */ BF_WR(POWER_CTRL_TOG, POLARITY_VDD5V_GT_VDDIO(1)); /* clear int */ BF_CLR(POWER_CTRL, VDD5V_GT_VDDIO_IRQ); } #endif } void imx233_power_init(void) { #if IMX233_SUBTARGET >= 3700 BF_CLR(POWER_MINPWR, HALF_FETS); #endif /* setup vbusvalid parameters: set threshold to 4v and power up comparators */ BF_CS(POWER_5VCTRL, VBUSVALID_TRSH(1)); #if IMX233_SUBTARGET >= 3780 BF_SET(POWER_5VCTRL, PWRUP_VBUS_CMPS); #else BF_SET(POWER_5VCTRL, OTG_PWRUP_CMPS); #endif /* enable vbusvalid detection method for the dcdc (improves efficiency) */ BF_SET(POWER_5VCTRL, VBUSVALID_5VDETECT); /* disable shutdown on 5V fail */ BF_CLR(POWER_5VCTRL, PWDN_5VBRNOUT); #ifdef USE_VBUSVALID /* make sure VBUSVALID is unlocked */ BF_CLR(POWER_DEBUG, VBUSVALIDPIOLOCK); /* clear vbusvalid irq and set correct polarity */ BF_CLR(POWER_CTRL, VBUSVALID_IRQ); if(BF_RD(POWER_STS, VBUSVALID)) BF_CLR(POWER_CTRL, POLARITY_VBUSVALID); else BF_SET(POWER_CTRL, POLARITY_VBUSVALID); BF_SET(POWER_CTRL, ENIRQ_VBUS_VALID); /* make sure old detection way is not enabled */ BF_CLR(POWER_CTRL, ENIRQ_VDD5V_GT_VDDIO); #else BF_CLR(POWER_CTRL, VDD5V_GT_VDDIO_IRQ); if(BF_RD(POWER_STS, VDD5V_GT_VDDIO)) BF_CLR(POWER_CTRL, POLARITY_VDD5V_GT_VDDIO); else BF_SET(POWER_CTRL, POLARITY_VDD5V_GT_VDDIO); BF_SET(POWER_CTRL, ENIRQ_VDD5V_GT_VDDIO); /* make the vbusvalid detection way is not enabled */ #if IMX233_SUBTARGET >= 3700 BF_CLR(POWER_CTRL, ENIRQ_VBUS_VALID); #endif #endif /* the VDD5V IRQ is shared by several sources, disable them */ #if IMX233_SUBTARGET >= 3700 BF_CLR(POWER_CTRL, ENIRQ_PSWITCH); BF_CLR(POWER_CTRL, ENIRQ_DC_OK); #if IMX233_SUBTARGET < 3780 BF_CLR(POWER_CTRL, ENIRQ_LINREG_OK); #endif /* IMX233_SUBTARGET < 3780 */ #endif /* IMX233_SUBTARGET >= 3700 */ imx233_icoll_enable_interrupt(INT_SRC_VDD5V, true); } void power_init(void) { } void power_off(void) { imx233_system_prepare_shutdown(); /* power down */ HW_POWER_RESET = BF_OR(POWER_RESET, UNLOCK_V(KEY), PWD(1)); while(1); } unsigned int power_input_status(void) { return (usb_detect() == USB_INSERTED) ? POWER_INPUT_MAIN_CHARGER : POWER_INPUT_NONE; } bool charging_state(void) { return BF_RD(POWER_STS, CHRGSTS); } void imx233_power_set_charge_current(unsigned current) { #if IMX233_SUBTARGET >= 3700 BF_CLR(POWER_CHARGE, BATTCHRG_I); #else BF_CLR(POWER_BATTCHRG, BATTCHRG_I); #endif /* find closest current LOWER THAN OR EQUAL TO the expected current */ for(unsigned i = 0; i < ARRAYLEN(g_charger_current_bits); i++) if(current >= g_charger_current_bits[i].current) { current -= g_charger_current_bits[i].current; #if IMX233_SUBTARGET >= 3700 BF_WR(POWER_CHARGE_SET, BATTCHRG_I(g_charger_current_bits[i].bit)); #else BF_WR(POWER_BATTCHRG_SET, BATTCHRG_I(g_charger_current_bits[i].bit)); #endif } } void imx233_power_set_stop_current(unsigned current) { #if IMX233_SUBTARGET >= 3700 BF_CLR(POWER_CHARGE, STOP_ILIMIT); #else BF_CLR(POWER_BATTCHRG, STOP_ILIMIT); #endif /* find closest current GREATHER THAN OR EQUAL TO the expected current */ unsigned sum = 0; for(unsigned i = 0; i < ARRAYLEN(g_charger_stop_current_bits); i++) sum += g_charger_stop_current_bits[i].current; for(unsigned i = 0; i < ARRAYLEN(g_charger_stop_current_bits); i++) { sum -= g_charger_stop_current_bits[i].current; if(current > sum) { current -= g_charger_stop_current_bits[i].current; #if IMX233_SUBTARGET >= 3700 BF_WR(POWER_CHARGE_SET, STOP_ILIMIT(g_charger_stop_current_bits[i].bit)); #else BF_WR(POWER_BATTCHRG_SET, STOP_ILIMIT(g_charger_stop_current_bits[i].bit)); #endif } } } /* regulator info */ #define HAS_BO (1 << 0) #define HAS_LINREG (1 << 1) #define HAS_LINREG_OFFSET (1 << 2) #define HAS_ABS_BO (1 << 3) static struct { unsigned min, step; int off; // offset in the register value volatile uint32_t *reg; uint32_t trg_bm, trg_bp; // bitmask and bitpos unsigned flags; uint32_t bo_bm, bo_bp; // bitmask and bitpos uint32_t linreg_bm; uint32_t linreg_offset_bm, linreg_offset_bp; // bitmask and bitpos } regulator_info[] = { #define ADD_REGULATOR(name, mask) \ .min = HW_POWER_##name##CTRL__TRG_MIN, \ .step = HW_POWER_##name##CTRL__TRG_STEP, \ .reg = &HW_POWER_##name##CTRL, \ .trg_bm = BM_POWER_##name##CTRL_TRG, \ .trg_bp = BP_POWER_##name##CTRL_TRG, \ .flags = mask, \ .off = 0 #define ADD_REGULATOR_BO(name) \ .bo_bm = BM_POWER_##name##CTRL_BO_OFFSET, \ .bo_bp = BP_POWER_##name##CTRL_BO_OFFSET #define ADD_REGULATOR_LINREG(name) \ .linreg_bm = BM_POWER_##name##CTRL_ENABLE_LINREG #define ADD_REGULATOR_LINREG_OFFSET(name) \ .linreg_offset_bm = BP_POWER_##name##CTRL_LINREG_OFFSET, \ .linreg_offset_bp = BM_POWER_##name##CTRL_LINREG_OFFSET #if IMX233_SUBTARGET >= 3700 [REGULATOR_VDDD] = { ADD_REGULATOR(VDDD, HAS_BO|HAS_LINREG|HAS_LINREG_OFFSET), ADD_REGULATOR_BO(VDDD), ADD_REGULATOR_LINREG(VDDD), ADD_REGULATOR_LINREG_OFFSET(VDDD) }, [REGULATOR_VDDA] = { ADD_REGULATOR(VDDA, HAS_BO|HAS_LINREG|HAS_LINREG_OFFSET), ADD_REGULATOR_BO(VDDA), ADD_REGULATOR_LINREG(VDDA), ADD_REGULATOR_LINREG_OFFSET(VDDA) }, [REGULATOR_VDDIO] = { ADD_REGULATOR(VDDIO, HAS_BO|HAS_LINREG_OFFSET), ADD_REGULATOR_BO(VDDIO), ADD_REGULATOR_LINREG_OFFSET(VDDIO) }, #if IMX233_SUBTARGET >= 3780 [REGULATOR_VDDMEM] = { ADD_REGULATOR(VDDMEM, HAS_LINREG), ADD_REGULATOR_LINREG(VDDMEM), }, #endif #else [REGULATOR_VDDD] = { .min = HW_POWER_VDDDCTRL__TRG_MIN, .step = HW_POWER_VDDDCTRL__TRG_STEP, .off = HW_POWER_VDDDCTRL__TRG_OFF, .reg = &HW_POWER_VDDCTRL, .flags = HAS_BO | HAS_ABS_BO, .trg_bm = BM_POWER_VDDCTRL_VDDD_TRG, .trg_bp = BP_POWER_VDDCTRL_VDDD_TRG, .bo_bm = BM_POWER_VDDCTRL_VDDD_BO, .bo_bp = BP_POWER_VDDCTRL_VDDD_BO, }, #endif }; void imx233_power_get_regulator(enum imx233_regulator_t reg, unsigned *value_mv, unsigned *brownout_mv) { uint32_t reg_val = *regulator_info[reg].reg; /* read target value */ unsigned raw_val = (reg_val & regulator_info[reg].trg_bm) >> regulator_info[reg].trg_bp; raw_val -= regulator_info[reg].off; /* convert it to mv */ if(value_mv) *value_mv = regulator_info[reg].min + regulator_info[reg].step * raw_val; if(regulator_info[reg].flags & HAS_BO) { /* read brownout offset */ unsigned raw_bo = (reg_val & regulator_info[reg].bo_bm) >> regulator_info[reg].bo_bp; raw_bo -= regulator_info[reg].off; if(!(regulator_info[reg].flags & HAS_ABS_BO)) raw_bo = raw_val - raw_bo; /* convert it to mv */ if(brownout_mv) *brownout_mv = regulator_info[reg].min + regulator_info[reg].step * raw_bo; } else if(brownout_mv) *brownout_mv = 0; } #if IMX233_SUBTARGET >= 3700 && IMX233_SUBTARGET < 3780 static void update_dcfuncv(void) { int vddd, vdda, vddio; imx233_power_get_regulator(REGULATOR_VDDD, &vddd, NULL); imx233_power_get_regulator(REGULATOR_VDDA, &vdda, NULL); imx233_power_get_regulator(REGULATOR_VDDIO, &vddio, NULL); // assume Li-Ion, to divide by 6.25, do *100 and /625 BF_WR_ALL(POWER_DCFUNCV, VDDIO(((vddio - vdda) * 100) / 625), VDDD(((vdda - vddd) * 100) / 625)); } #endif void imx233_power_set_regulator(enum imx233_regulator_t reg, unsigned value_mv, unsigned brownout_mv) { // compute raw values unsigned raw_val = (value_mv - regulator_info[reg].min) / regulator_info[reg].step; raw_val += regulator_info[reg].off; if(!(regulator_info[reg].flags & HAS_ABS_BO)) brownout_mv = value_mv - brownout_mv; unsigned raw_bo_offset = brownout_mv/ regulator_info[reg].step; raw_bo_offset += regulator_info[reg].off; // clear dc-dc ok flag #if IMX233_SUBTARGET >= 3700 BF_SET(POWER_CTRL, DC_OK_IRQ); #endif // update uint32_t reg_val = (*regulator_info[reg].reg) & ~regulator_info[reg].trg_bm; reg_val |= raw_val << regulator_info[reg].trg_bp; if(regulator_info[reg].flags & HAS_BO) { reg_val &= ~regulator_info[reg].bo_bm; reg_val |= raw_bo_offset << regulator_info[reg].bo_bp; } *regulator_info[reg].reg = reg_val; /* Wait until regulator is stable (ie brownout condition is gone) * If DC-DC is used, we can use the DCDC_OK irq * Otherwise it is unreliable (doesn't work when lowering voltage on linregs) * It usually takes between 0.5ms and 2.5ms */ #if IMX233_SUBTARGET >= 3700 sleep(1); #else if(!BF_RD(POWER_5VCTRL, EN_DCDC1) || !BF_RD(POWER_5VCTRL, EN_DCDC2)) panicf("regulator %d: wait for voltage stabilize in linreg mode !", reg); unsigned timeout = current_tick + (HZ * 20) / 1000; while(!BF_RD(POWER_STS, DC1_OK) || !BF_RD(POWER_STS, DC2_OK) || !TIME_AFTER(current_tick, timeout)) yield(); if(!BF_RD(POWER_STS, DC1_OK) || !BF_RD(POWER_STS, DC2_OK)) panicf("regulator %d: failed to stabilize", reg); #endif /* On STMP37xx, we need to update the weird HW_POWER_DCFUNCV register */ #if IMX233_SUBTARGET >= 3700 && IMX233_SUBTARGET < 3780 update_dcfuncv(); #endif } // offset is -1,0 or 1 void imx233_power_get_regulator_linreg(enum imx233_regulator_t reg, bool *enabled, int *linreg_offset) { if(enabled && regulator_info[reg].flags & HAS_LINREG) *enabled = !!(*regulator_info[reg].reg & regulator_info[reg].linreg_bm); else if(enabled) *enabled = true; if(regulator_info[reg].flags & HAS_LINREG_OFFSET) { unsigned v = (*regulator_info[reg].reg & regulator_info[reg].linreg_offset_bm); v >>= regulator_info[reg].linreg_offset_bp; if(linreg_offset) *linreg_offset = (v == 0) ? 0 : (v == 1) ? 1 : -1; } else if(linreg_offset) *linreg_offset = 0; } // offset is -1,0 or 1 /* void imx233_power_set_regulator_linreg(enum imx233_regulator_t reg, bool enabled, int linreg_offset) { } */ #if IMX233_SUBTARGET < 3700 int imx233_power_sense_die_temperature(int *min, int *max) { static int die_temp[] = { -50, -40, -30, -20, -10, 0, 15, 25, 35, 45, 55, 70, 85, 95, 105, 115, 130 }; /* power up temperature sensor */ BF_WR(POWER_SPEEDTEMP_CLR, TEMP_CTRL(1 << 3)); /* read temp */ int sense = BF_RD(POWER_SPEEDTEMP, TEMP_STS); *min = die_temp[sense]; *max = die_temp[sense + 1]; /* power down temperature sensor */ BF_WR(POWER_SPEEDTEMP_SET, TEMP_CTRL(1 << 3)); return 0; } #endif struct imx233_power_info_t imx233_power_get_info(unsigned flags) { #if IMX233_SUBTARGET >= 3700 static int dcdc_freqsel[8] = { [BV_POWER_MISC_FREQSEL__RES] = 0, [BV_POWER_MISC_FREQSEL__20MHz] = 20000, [BV_POWER_MISC_FREQSEL__24MHz] = 24000, [BV_POWER_MISC_FREQSEL__19p2MHz] = 19200, [BV_POWER_MISC_FREQSEL__14p4MHz] = 14200, [BV_POWER_MISC_FREQSEL__18MHz] = 18000, [BV_POWER_MISC_FREQSEL__21p6MHz] = 21600, [BV_POWER_MISC_FREQSEL__17p28MHz] = 17280, }; #endif struct imx233_power_info_t s; memset(&s, 0, sizeof(s)); #if IMX233_SUBTARGET >= 3700 if(flags & POWER_INFO_DCDC) { s.dcdc_sel_pllclk = BF_RD(POWER_MISC, SEL_PLLCLK); s.dcdc_freqsel = dcdc_freqsel[BF_RD(POWER_MISC, FREQSEL)]; } #endif if(flags & POWER_INFO_CHARGE) { #if IMX233_SUBTARGET >= 3700 uint32_t current = BF_RD(POWER_CHARGE, BATTCHRG_I); uint32_t stop_current = BF_RD(POWER_CHARGE, STOP_ILIMIT); #else uint32_t current = BF_RD(POWER_BATTCHRG, BATTCHRG_I); uint32_t stop_current = BF_RD(POWER_BATTCHRG, STOP_ILIMIT); #endif for(unsigned i = 0; i < ARRAYLEN(g_charger_current_bits); i++) if(current & g_charger_current_bits[i].bit) s.charge_current += g_charger_current_bits[i].current; for(unsigned i = 0; i < ARRAYLEN(g_charger_stop_current_bits); i++) if(stop_current & g_charger_stop_current_bits[i].bit) s.stop_current += g_charger_stop_current_bits[i].current; s.charging = BF_RD(POWER_STS, CHRGSTS); #if IMX233_SUBTARGET >= 3700 s.batt_adj = BF_RD(POWER_BATTMONITOR, EN_BATADJ); #else s.batt_adj = BF_RD(POWER_DC1MULTOUT, EN_BATADJ); #endif } #if IMX233_SUBTARGET >= 3780 if(flags & POWER_INFO_4P2) { s._4p2_enable = BF_RD(POWER_DCDC4P2, ENABLE_4P2); s._4p2_dcdc = BF_RD(POWER_DCDC4P2, ENABLE_DCDC); s._4p2_cmptrip = BF_RD(POWER_DCDC4P2, CMPTRIP); s._4p2_dropout = BF_RD(POWER_DCDC4P2, DROPOUT_CTRL); } #endif if(flags & POWER_INFO_5V) { #if IMX233_SUBTARGET >= 3780 s._5v_pwd_charge_4p2 = BF_RD(POWER_5VCTRL, PWD_CHARGE_4P2); #endif s._5v_dcdc_xfer = BF_RD(POWER_5VCTRL, DCDC_XFER); #if IMX233_SUBTARGET >= 3700 s._5v_enable_dcdc = BF_RD(POWER_5VCTRL, ENABLE_DCDC); #else s._5v_enable_dcdc = BF_RD(POWER_5VCTRL, EN_DCDC1) && BF_RD(POWER_5VCTRL, EN_DCDC2); #endif #if IMX233_SUBTARGET >= 3780 uint32_t charge_4p2_ilimit = BF_RD(POWER_5VCTRL, CHARGE_4P2_ILIMIT); for(unsigned i = 0; i < ARRAYLEN(g_4p2_charge_limit_bits); i++) if(charge_4p2_ilimit & g_4p2_charge_limit_bits[i].bit) s._5v_charge_4p2_limit += g_4p2_charge_limit_bits[i].current; #endif s._5v_vbusvalid_detect = BF_RD(POWER_5VCTRL, VBUSVALID_5VDETECT); #if IMX233_SUBTARGET >= 3780 s._5v_vbus_cmps = BF_RD(POWER_5VCTRL, PWRUP_VBUS_CMPS); #else s._5v_vbus_cmps = BF_RD(POWER_5VCTRL, OTG_PWRUP_CMPS); #endif s._5v_vbusvalid_thr = BF_RD(POWER_5VCTRL, VBUSVALID_TRSH) == 0 ? 2900 : 3900 + BF_RD(POWER_5VCTRL, VBUSVALID_TRSH) * 100; } return s; }