/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2006 Daniel Ankers * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" /* for HAVE_MULTIVOLUME */ #include "fat.h" #include "hotswap.h" #ifdef HAVE_HOTSWAP #include "sd-pp-target.h" #endif #include "ata_idle_notify.h" #include "system.h" #include #include "thread.h" #include "led.h" #include "disk.h" #include "cpu.h" #include "panic.h" #include "usb.h" #include "sd.h" #include "storage.h" #define SECTOR_SIZE 512 #define BLOCKS_PER_BANK 0x7a7800 /* Comparing documentations of various MMC/SD controllers revealed, */ /* that this controller seems to be a mix of PXA27x, PXA255 and */ /* some PP specific stuff. The register and bit definitions are */ /* taken from the 'PXA27x Developers Manual', as it appears to be */ /* the closest match. Known differences and obscurities are commented.*/ #define MMC_STRPCL (*(volatile unsigned int *)(0x70008200)) #define MMC_STAT (*(volatile unsigned int *)(0x70008204)) #define MMC_CLKRT (*(volatile unsigned int *)(0x70008208)) #define MMC_SPI (*(volatile unsigned int *)(0x7000820c)) #define MMC_CMDAT (*(volatile unsigned int *)(0x70008210)) #define MMC_RESTO (*(volatile unsigned int *)(0x70008214)) #define MMC_RDTO (*(volatile unsigned int *)(0x70008218)) #define MMC_BLKLEN (*(volatile unsigned int *)(0x7000821c)) #define MMC_NUMBLK (*(volatile unsigned int *)(0x70008220)) #define MMC_I_MASK (*(volatile unsigned int *)(0x70008224)) #define MMC_CMD (*(volatile unsigned int *)(0x70008228)) #define MMC_ARGH (*(volatile unsigned int *)(0x7000822c)) #define MMC_ARGL (*(volatile unsigned int *)(0x70008230)) #define MMC_RES (*(volatile unsigned int *)(0x70008234)) /* PXA255/27x have separate RX/TX FIFOs with 32x8 bit */ /* PP502x has a combined Data FIFO with 16x16 bit */ #define MMC_DATA_FIFO (*(volatile unsigned int *)(0x70008280)) /* PP specific registers, no other controller seem to have such. */ #define MMC_SD_STATE (*(volatile unsigned int *)(0x70008238)) #define MMC_INIT_1 (*(volatile unsigned int *)(0x70008240)) #define MMC_INIT_2 (*(volatile unsigned int *)(0x70008244)) /* MMC_STAT bits */ #define STAT_SDIO_SUSPEND_ACK (1 << 16) #define STAT_SDIO_INT (1 << 15) #define STAT_RD_STALLED (1 << 14) #define STAT_END_CMD_RES (1 << 13) #define STAT_PRG_DONE (1 << 12) #define STAT_DATA_TRAN_DONE (1 << 11) #define STAT_SPI_WR_ERR (1 << 10) #define STAT_FLASH_ERR (1 << 9) #define STAT_CLK_EN (1 << 8) #define STAT_RECV_FIFO_FULL (1 << 7) /* taken from PXA255 */ #define STAT_XMIT_FIFO_EMPTY (1 << 6) /* taken from PXA255 */ #define STAT_RES_CRC_ERR (1 << 5) #define STAT_DAT_ERR_TOKEN (1 << 4) #define STAT_CRC_RD_ERR (1 << 3) #define STAT_CRC_WR_ERR (1 << 2) #define STAT_TIME_OUT_RES (1 << 1) #define STAT_TIME_OUT_READ (1) #define STAT_ERROR_BITS (0x3f) /* MMC_CMDAT bits */ /* Some of the bits used by the OF don't make much sense with these */ /* definitions. So they're probably different between PXA and PP502x */ /* Bits 0-5 appear to match though. */ #define CMDAT_SDIO_RESUME (1 << 13) #define CMDAT_SDIO_SUSPEND (1 << 12) #define CMDAT_SDIO_INT_EN (1 << 11) #define CMDAT_STOP_TRAN (1 << 10) #define CMDAT_SD_4DAT (1 << 8) #define CMDAT_DMA_EN (1 << 7) #define CMDAT_INIT (1 << 6) #define CMDAT_BUSY (1 << 5) #define CMDAT_STRM_BLK (1 << 4) #define CMDAT_WR_RD (1 << 3) #define CMDAT_DATA_EN (1 << 2) #define CMDAT_RES_TYPE3 (3) #define CMDAT_RES_TYPE2 (2) #define CMDAT_RES_TYPE1 (1) /* MMC_I_MASK bits */ /* PP502x apparently only has bits 0-3 */ #define I_MASK_SDIO_SUSPEND_ACK (1 << 12) #define I_MASK_SDIO_INT (1 << 11) #define I_MASK_RD_STALLED (1 << 10) #define I_MASK_RES_ERR (1 << 9) #define I_MASK_DAT_ERR (1 << 8) #define I_MASK_TINT (1 << 7) #define I_MASK_TXFIFO_WR_REQ (1 << 6) #define I_MASK_RXFIFO_RD_REQ (1 << 5) #define I_MASK_CLK_IS_OFF (1 << 4) #define I_MASK_STOP_CMD (1 << 3) #define I_MASK_END_CMD_RES (1 << 2) #define I_MASK_PRG_DONE (1 << 1) #define I_MASK_DATA_TRAN_DONE (1 << 0) #define FIFO_LEN 16 /* FIFO is 16 words deep */ #define EC_OK 0 #define EC_FAILED 1 #define EC_NOCARD 2 #define EC_WAIT_STATE_FAILED 3 #define EC_CHECK_TIMEOUT_FAILED 4 #define EC_POWER_UP 5 #define EC_READ_TIMEOUT 6 #define EC_WRITE_TIMEOUT 7 #define EC_TRAN_SEL_BANK 8 #define EC_TRAN_READ_ENTRY 9 #define EC_TRAN_READ_EXIT 10 #define EC_TRAN_WRITE_ENTRY 11 #define EC_TRAN_WRITE_EXIT 12 #define EC_FIFO_SEL_BANK_EMPTY 13 #define EC_FIFO_SEL_BANK_DONE 14 #define EC_FIFO_ENA_BANK_EMPTY 15 #define EC_FIFO_READ_FULL 16 #define EC_FIFO_WR_EMPTY 17 #define EC_FIFO_WR_DONE 18 #define EC_COMMAND 19 #define NUM_EC 20 /* for compatibility */ static long last_disk_activity = -1; /** static, private data **/ static bool initialized = false; static long next_yield = 0; #define MIN_YIELD_PERIOD 1000 static tCardInfo card_info[2]; static tCardInfo *currcard = NULL; /* current active card */ struct sd_card_status { int retry; int retry_max; }; static struct sd_card_status sd_status[NUM_VOLUMES] = { { 0, 1 }, #ifdef HAVE_MULTIVOLUME { 0, 10 } #endif }; /* Shoot for around 75% usage */ static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x1c0)/sizeof(long)]; static const char sd_thread_name[] = "ata/sd"; static struct mutex sd_mtx SHAREDBSS_ATTR; static struct event_queue sd_queue; /* Posted when card plugged status has changed */ #define SD_HOTSWAP 1 /* Actions taken by sd_thread when card status has changed */ enum sd_thread_actions { SDA_NONE = 0x0, SDA_UNMOUNTED = 0x1, SDA_MOUNTED = 0x2 }; /* Private Functions */ static unsigned int check_time[NUM_EC]; static inline bool sd_check_timeout(long timeout, int id) { return !TIME_AFTER(USEC_TIMER, check_time[id] + timeout); } static bool sd_poll_status(unsigned int trigger, long timeout) { long t = USEC_TIMER; while ((MMC_STAT & trigger) == 0) { long time = USEC_TIMER; if (TIME_AFTER(time, next_yield)) { long ty = USEC_TIMER; yield(); timeout += USEC_TIMER - ty; next_yield = ty + MIN_YIELD_PERIOD; } if (TIME_AFTER(time, t + timeout)) return false; } return true; } static int sd_command(unsigned int cmd, unsigned long arg1, unsigned long *response, unsigned int cmdat) { int i, words; /* Number of 16 bit words to read from MMC_RES */ unsigned int data[9]; MMC_CMD = cmd; MMC_ARGH = (unsigned int)((arg1 & 0xffff0000) >> 16); MMC_ARGL = (unsigned int)((arg1 & 0xffff)); MMC_CMDAT = cmdat; if (!sd_poll_status(STAT_END_CMD_RES, 100000)) return -EC_COMMAND; if ((MMC_STAT & STAT_ERROR_BITS) != 0) /* Error sending command */ return -EC_COMMAND - (MMC_STAT & STAT_ERROR_BITS)*100; if (cmd == SD_GO_IDLE_STATE) return 0; /* no response here */ words = (cmdat == CMDAT_RES_TYPE2) ? 9 : 3; for (i = 0; i < words; i++) /* MMC_RES is read MSB first */ data[i] = MMC_RES; /* Read most significant 16-bit word */ if (response == NULL) { /* response discarded */ } else if (cmdat == CMDAT_RES_TYPE2) { /* Response type 2 has the following structure: * [135:135] Start Bit - '0' * [134:134] Transmission bit - '0' * [133:128] Reserved - '111111' * [127:001] CID or CSD register including internal CRC7 * [000:000] End Bit - '1' */ response[3] = (data[0]<<24) + (data[1]<<8) + (data[2]>>8); response[2] = (data[2]<<24) + (data[3]<<8) + (data[4]>>8); response[1] = (data[4]<<24) + (data[5]<<8) + (data[6]>>8); response[0] = (data[6]<<24) + (data[7]<<8) + (data[8]>>8); } else { /* Response types 1, 1b, 3, 6, 7 have the following structure: * Types 4 and 5 are not supported. * * [47] Start bit - '0' * [46] Transmission bit - '0' * [45:40] R1, R1b, R6, R7: Command index * R3: Reserved - '111111' * [39:8] R1, R1b: Card Status * R3: OCR Register * R6: [31:16] RCA * [15: 0] Card Status Bits 23, 22, 19, 12:0 * [23] COM_CRC_ERROR * [22] ILLEGAL_COMMAND * [19] ERROR * [12:9] CURRENT_STATE * [8] READY_FOR_DATA * [7:6] * [5] SD_APP_CMD * [4] * [3] AKE_SEQ_ERROR * [2] Reserved * [1:0] Reserved for test mode * R7: [19:16] Voltage accepted * [15:8] echo-back of check pattern * [7:1] R1, R1b: CRC7 * R3: Reserved - '1111111' * [0] End Bit - '1' */ response[0] = (data[0]<<24) + (data[1]<<8) + (data[2]>>8); } return 0; } static int sd_wait_for_state(unsigned int state, int id) { unsigned long response = 0; unsigned int timeout = 0x80000; check_time[id] = USEC_TIMER; while (1) { int ret = sd_command(SD_SEND_STATUS, currcard->rca, &response, CMDAT_RES_TYPE1); long us; if (ret < 0) return ret*100 - id; if (((response >> 9) & 0xf) == state) { MMC_SD_STATE = state; return 0; } if (!sd_check_timeout(timeout, id)) return -EC_WAIT_STATE_FAILED*100 - id; us = USEC_TIMER; if (TIME_AFTER(us, next_yield)) { yield(); timeout += USEC_TIMER - us; next_yield = us + MIN_YIELD_PERIOD; } } } static inline void copy_read_sectors_fast(unsigned char **buf) { /* Copy one chunk of 16 words using best method for start alignment */ switch ( (intptr_t)*buf & 3 ) { case 0: asm volatile ( "ldmia %[data], { r2-r9 } \r\n" "orr r2, r2, r3, lsl #16 \r\n" "orr r4, r4, r5, lsl #16 \r\n" "orr r6, r6, r7, lsl #16 \r\n" "orr r8, r8, r9, lsl #16 \r\n" "stmia %[buf]!, { r2, r4, r6, r8 } \r\n" "ldmia %[data], { r2-r9 } \r\n" "orr r2, r2, r3, lsl #16 \r\n" "orr r4, r4, r5, lsl #16 \r\n" "orr r6, r6, r7, lsl #16 \r\n" "orr r8, r8, r9, lsl #16 \r\n" "stmia %[buf]!, { r2, r4, r6, r8 } \r\n" : [buf]"+&r"(*buf) : [data]"r"(&MMC_DATA_FIFO) : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9" ); break; case 1: asm volatile ( "ldmia %[data], { r2-r9 } \r\n" "orr r3, r2, r3, lsl #16 \r\n" "strb r3, [%[buf]], #1 \r\n" "mov r3, r3, lsr #8 \r\n" "strh r3, [%[buf]], #2 \r\n" "mov r3, r3, lsr #16 \r\n" "orr r3, r3, r4, lsl #8 \r\n" "orr r3, r3, r5, lsl #24 \r\n" "mov r5, r5, lsr #8 \r\n" "orr r5, r5, r6, lsl #8 \r\n" "orr r5, r5, r7, lsl #24 \r\n" "mov r7, r7, lsr #8 \r\n" "orr r7, r7, r8, lsl #8 \r\n" "orr r7, r7, r9, lsl #24 \r\n" "mov r2, r9, lsr #8 \r\n" "stmia %[buf]!, { r3, r5, r7 } \r\n" "ldmia %[data], { r3-r10 } \r\n" "orr r2, r2, r3, lsl #8 \r\n" "orr r2, r2, r4, lsl #24 \r\n" "mov r4, r4, lsr #8 \r\n" "orr r4, r4, r5, lsl #8 \r\n" "orr r4, r4, r6, lsl #24 \r\n" "mov r6, r6, lsr #8 \r\n" "orr r6, r6, r7, lsl #8 \r\n" "orr r6, r6, r8, lsl #24 \r\n" "mov r8, r8, lsr #8 \r\n" "orr r8, r8, r9, lsl #8 \r\n" "orr r8, r8, r10, lsl #24 \r\n" "mov r10, r10, lsr #8 \r\n" "stmia %[buf]!, { r2, r4, r6, r8 } \r\n" "strb r10, [%[buf]], #1 \r\n" : [buf]"+&r"(*buf) : [data]"r"(&MMC_DATA_FIFO) : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10" ); break; case 2: asm volatile ( "ldmia %[data], { r2-r9 } \r\n" "strh r2, [%[buf]], #2 \r\n" "orr r3, r3, r4, lsl #16 \r\n" "orr r5, r5, r6, lsl #16 \r\n" "orr r7, r7, r8, lsl #16 \r\n" "stmia %[buf]!, { r3, r5, r7 } \r\n" "ldmia %[data], { r2-r8, r10 } \r\n" "orr r2, r9, r2, lsl #16 \r\n" "orr r3, r3, r4, lsl #16 \r\n" "orr r5, r5, r6, lsl #16 \r\n" "orr r7, r7, r8, lsl #16 \r\n" "stmia %[buf]!, { r2, r3, r5, r7 } \r\n" "strh r10, [%[buf]], #2 \r\n" : [buf]"+&r"(*buf) : [data]"r"(&MMC_DATA_FIFO) : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10" ); break; case 3: asm volatile ( "ldmia %[data], { r2-r9 } \r\n" "orr r3, r2, r3, lsl #16 \r\n" "strb r3, [%[buf]], #1 \r\n" "mov r3, r3, lsr #8 \r\n" "orr r3, r3, r4, lsl #24 \r\n" "mov r4, r4, lsr #8 \r\n" "orr r5, r4, r5, lsl #8 \r\n" "orr r5, r5, r6, lsl #24 \r\n" "mov r6, r6, lsr #8 \r\n" "orr r7, r6, r7, lsl #8 \r\n" "orr r7, r7, r8, lsl #24 \r\n" "mov r8, r8, lsr #8 \r\n" "orr r2, r8, r9, lsl #8 \r\n" "stmia %[buf]!, { r3, r5, r7 } \r\n" "ldmia %[data], { r3-r10 } \r\n" "orr r2, r2, r3, lsl #24 \r\n" "mov r3, r3, lsr #8 \r\n" "orr r4, r3, r4, lsl #8 \r\n" "orr r4, r4, r5, lsl #24 \r\n" "mov r5, r5, lsr #8 \r\n" "orr r6, r5, r6, lsl #8 \r\n" "orr r6, r6, r7, lsl #24 \r\n" "mov r7, r7, lsr #8 \r\n" "orr r8, r7, r8, lsl #8 \r\n" "orr r8, r8, r9, lsl #24 \r\n" "mov r9, r9, lsr #8 \r\n" "orr r10, r9, r10, lsl #8 \r\n" "stmia %[buf]!, { r2, r4, r6, r8 } \r\n" "strh r10, [%[buf]], #2 \r\n" "mov r10, r10, lsr #16 \r\n" "strb r10, [%[buf]], #1 \r\n" : [buf]"+&r"(*buf) : [data]"r"(&MMC_DATA_FIFO) : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10" ); break; } } static inline void copy_read_sectors_slow(unsigned char** buf) { int cnt = FIFO_LEN; int t; /* Copy one chunk of 16 words */ asm volatile ( "1: \r\n" "ldrh %[t], [%[data]] \r\n" "strb %[t], [%[buf]], #1 \r\n" "mov %[t], %[t], lsr #8 \r\n" "strb %[t], [%[buf]], #1 \r\n" "subs %[cnt], %[cnt], #1 \r\n" "bgt 1b \r\n" : [cnt]"+&r"(cnt), [buf]"+&r"(*buf), [t]"=&r"(t) : [data]"r"(&MMC_DATA_FIFO) ); } /* Writes have to be kept slow for now */ static inline void copy_write_sectors(const unsigned char** buf) { int cnt = FIFO_LEN - 1; unsigned t; long time; time = USEC_TIMER + 3; if (((intptr_t)*buf & 3) == 0) { asm volatile ( "ldmia %[buf]!, { r3, r5, r7, r9 } \r\n" "mov r4, r3, lsr #16 \r\n" "mov r6, r5, lsr #16 \r\n" "mov r8, r7, lsr #16 \r\n" "mov r10, r9, lsr #16 \r\n" "stmia %[data], { r3-r10 } \r\n" "ldmia %[buf]!, { r3, r5, r7, r9 } \r\n" "mov r4, r3, lsr #16 \r\n" "mov r6, r5, lsr #16 \r\n" "mov r8, r7, lsr #16 \r\n" "mov %[t], r9, lsr #16 \r\n" "stmia %[data], { r3-r9 } \r\n" : [buf]"+&r"(*buf), [t]"=&r"(t) : [data]"r"(&MMC_DATA_FIFO) : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10" ); } else { do { t = *(*buf)++; t |= *(*buf)++ << 8; MMC_DATA_FIFO = t; } while (--cnt > 0); /* tail loop is faster */ t = *(*buf)++; t |= *(*buf)++ << 8; } /* Don't write the last word before at least 3 usec have elapsed since FIFO_EMPTY */ /* This prevents the 'two bytes inserted' bug. */ while (!TIME_AFTER(USEC_TIMER, time)); MMC_DATA_FIFO = t; } static int sd_select_bank(unsigned char bank) { unsigned char card_data[512]; const unsigned char* write_buf; int i, ret; memset(card_data, 0, 512); ret = sd_wait_for_state(SD_TRAN, EC_TRAN_SEL_BANK); if (ret < 0) return ret; MMC_BLKLEN = 512; MMC_NUMBLK = 1; ret = sd_command(35, 0, NULL, /* CMD35 is vendor specific */ 0x1c00 | CMDAT_WR_RD | CMDAT_DATA_EN | CMDAT_RES_TYPE1); if (ret < 0) return ret; MMC_SD_STATE = SD_PRG; card_data[0] = bank; /* Write the card data */ write_buf = card_data; for (i = 0; i < SD_BLOCK_SIZE/2; i += FIFO_LEN) { /* Wait for the FIFO to empty */ if (sd_poll_status(STAT_XMIT_FIFO_EMPTY, 10000)) { copy_write_sectors(&write_buf); /* Copy one chunk of 16 words */ continue; } return -EC_FIFO_SEL_BANK_EMPTY; } if (!sd_poll_status(STAT_PRG_DONE, 10000)) return -EC_FIFO_SEL_BANK_DONE; currcard->current_bank = bank; return 0; } static void sd_card_mux(int card_no) { /* Set the current card mux */ #if defined(SANSA_E200) if (card_no == 0) { GPO32_VAL |= 0x4; GPIO_CLEAR_BITWISE(GPIOA_ENABLE, 0x7a); GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x7a); GPIO_SET_BITWISE(GPIOD_ENABLE, 0x1f); GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x1f); GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x1f); outl((inl(0x70000014) & ~(0x3ffff)) | 0x255aa, 0x70000014); } else { GPO32_VAL &= ~0x4; GPIO_CLEAR_BITWISE(GPIOD_ENABLE, 0x1f); GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x1f); GPIO_SET_BITWISE(GPIOA_ENABLE, 0x7a); GPIO_SET_BITWISE(GPIOA_OUTPUT_VAL, 0x7a); GPIO_SET_BITWISE( GPIOA_OUTPUT_EN, 0x7a); outl(inl(0x70000014) & ~(0x3ffff), 0x70000014); } #elif defined(SANSA_C200) if (card_no == 0) { GPO32_VAL |= 0x4; GPIO_CLEAR_BITWISE(GPIOD_ENABLE, 0x1f); GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x1f); GPIO_SET_BITWISE(GPIOA_ENABLE, 0x7a); GPIO_SET_BITWISE(GPIOA_OUTPUT_VAL, 0x7a); GPIO_SET_BITWISE( GPIOA_OUTPUT_EN, 0x7a); outl(inl(0x70000014) & ~(0x3ffff), 0x70000014); } else { GPO32_VAL &= ~0x4; GPIO_CLEAR_BITWISE(GPIOA_ENABLE, 0x7a); GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x7a); GPIO_SET_BITWISE(GPIOD_ENABLE, 0x1f); GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x1f); GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x1f); outl((inl(0x70000014) & ~(0x3ffff)) | 0x255aa, 0x70000014); } #elif defined(PHILIPS_SA9200) /* only 1 "card" (no external memory card) */ (void)card_no; GPIO_SET_BITWISE(GPIOH_ENABLE, 0x80); GPIO_SET_BITWISE(GPIOH_OUTPUT_EN, 0x80); outl(0x255aa, 0x70000014); GPIO_CLEAR_BITWISE(GPIOA_ENABLE, 0x04); GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x04); GPIO_CLEAR_BITWISE(GPIOA_ENABLE, 0x7a); GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x7a); GPIO_SET_BITWISE(GPIOH_OUTPUT_VAL, 0x80); GPIO_SET_BITWISE(GPIOH_OUTPUT_EN, 0x80); #endif } static void sd_init_device(int card_no) { /* SD Protocol registers */ #ifdef HAVE_HOTSWAP unsigned long response = 0; #endif unsigned int i; unsigned char carddata[512]; unsigned char *dataptr; unsigned long temp_reg[4]; int ret; /* Enable and initialise controller */ MMC_CLKRT = 6; /* switch to lowest clock rate */ /* Initialise card data as blank */ memset(currcard, 0, sizeof(*currcard)); /* Switch card mux to card to initialize */ sd_card_mux(card_no); /* Init NAND */ MMC_INIT_1 |= (1 << 15); MMC_INIT_2 |= (1 << 15); MMC_INIT_2 &= ~(3 << 12); MMC_INIT_2 |= (1 << 13); MMC_INIT_1 &= ~(3 << 12); MMC_INIT_1 |= (1 << 13); DEV_EN |= DEV_ATA; /* Enable controller */ DEV_RS |= DEV_ATA; /* Reset controller */ DEV_RS &=~DEV_ATA; /* Clear Reset */ MMC_SD_STATE = SD_TRAN; MMC_I_MASK = 0xf; /* disable interrupts */ ret = sd_command(SD_GO_IDLE_STATE, 0, NULL, 0x100); if (ret < 0) goto card_init_error; check_time[EC_POWER_UP] = USEC_TIMER; #ifdef HAVE_HOTSWAP /* Check for SDHC: - non-SDHC cards simply ignore SD_SEND_IF_COND (CMD8) and we get error -219, which we can just ignore and assume we're dealing with standard SD. - SDHC cards echo back the argument into the response. This is how we tell if the card is SDHC. */ ret = sd_command(SD_SEND_IF_COND,0x1aa, &response, CMDAT_DATA_EN | CMDAT_RES_TYPE3); if ( (ret < 0) && (ret!=-219) ) goto card_init_error; #endif while ((currcard->ocr & (1 << 31)) == 0) /* until card is powered up */ { ret = sd_command(SD_APP_CMD, currcard->rca, NULL, CMDAT_RES_TYPE1); if (ret < 0) goto card_init_error; #ifdef HAVE_HOTSWAP if(response == 0x1aa) { /* SDHC */ ret = sd_command(SD_APP_OP_COND, (1<<30)|0x100000, &currcard->ocr, CMDAT_RES_TYPE3); } else #endif /* HAVE_HOTSWAP */ { /* SD Standard */ ret = sd_command(SD_APP_OP_COND, 0x100000, &currcard->ocr, CMDAT_RES_TYPE3); } if (ret < 0) goto card_init_error; if (!sd_check_timeout(5000000, EC_POWER_UP)) { ret = -EC_POWER_UP; goto card_init_error; } } ret = sd_command(SD_ALL_SEND_CID, 0, temp_reg, CMDAT_RES_TYPE2); if (ret < 0) goto card_init_error; for(i=0; i<4; i++) currcard->cid[i] = temp_reg[3-i]; ret = sd_command(SD_SEND_RELATIVE_ADDR, 0, &currcard->rca, CMDAT_RES_TYPE1); if (ret < 0) goto card_init_error; ret = sd_command(SD_SEND_CSD, currcard->rca, temp_reg, CMDAT_RES_TYPE2); if (ret < 0) goto card_init_error; for(i=0; i<4; i++) currcard->csd[i] = temp_reg[3-i]; sd_parse_csd(currcard); MMC_CLKRT = 0; /* switch to highest clock rate */ ret = sd_command(SD_SELECT_CARD, currcard->rca, NULL, 0x80 | CMDAT_RES_TYPE1); if (ret < 0) goto card_init_error; ret = sd_command(SD_APP_CMD, currcard->rca, NULL, CMDAT_RES_TYPE1); if (ret < 0) goto card_init_error; ret = sd_command(SD_SET_BUS_WIDTH, currcard->rca | 2, NULL, CMDAT_RES_TYPE1); /* 4 bit */ if (ret < 0) goto card_init_error; ret = sd_command(SD_SET_BLOCKLEN, currcard->blocksize, NULL, CMDAT_RES_TYPE1); if (ret < 0) goto card_init_error; MMC_BLKLEN = currcard->blocksize; /* If this card is >4GB & not SDHC, then we need to enable bank switching */ if( (currcard->numblocks >= BLOCKS_PER_BANK) && ((currcard->ocr & (1<<30)) == 0) ) { MMC_SD_STATE = SD_TRAN; MMC_NUMBLK = 1; ret = sd_command(SD_SWITCH_FUNC, 0x80ffffef, NULL, 0x1c00 | CMDAT_DATA_EN | CMDAT_RES_TYPE1); if (ret < 0) goto card_init_error; /* Read 512 bytes from the card. The first 512 bits contain the status information TODO: Do something useful with this! */ dataptr = carddata; for (i = 0; i < SD_BLOCK_SIZE/2; i += FIFO_LEN) { /* Wait for the FIFO to be full */ if (sd_poll_status(STAT_RECV_FIFO_FULL, 100000)) { copy_read_sectors_slow(&dataptr); continue; } ret = -EC_FIFO_ENA_BANK_EMPTY; goto card_init_error; } } currcard->initialized = 1; return; /* Card failed to initialize so disable it */ card_init_error: currcard->initialized = ret; } /* lock must already be aquired */ static void sd_select_device(int card_no) { currcard = &card_info[card_no]; if (card_no == 0) { /* Main card always gets a chance */ sd_status[0].retry = 0; } if (currcard->initialized > 0) { /* This card is already initialized - switch to it */ sd_card_mux(card_no); return; } if (currcard->initialized == 0) { /* Card needs (re)init */ sd_init_device(card_no); } } /* API Functions */ int sd_read_sectors(IF_MV2(int drive,) unsigned long start, int incount, void* inbuf) { #ifndef HAVE_MULTIVOLUME const int drive = 0; #endif int ret; unsigned char *buf, *buf_end; unsigned int bank; /* TODO: Add DMA support. */ mutex_lock(&sd_mtx); sd_enable(true); led(true); sd_read_retry: if (drive != 0 && !card_detect_target()) { /* no external sd-card inserted */ ret = -EC_NOCARD; goto sd_read_error; } sd_select_device(drive); if (currcard->initialized < 0) { ret = currcard->initialized; goto sd_read_error; } last_disk_activity = current_tick; /* Only switch banks with non-SDHC cards */ if((currcard->ocr & (1<<30))==0) { bank = start / BLOCKS_PER_BANK; if (currcard->current_bank != bank) { ret = sd_select_bank(bank); if (ret < 0) goto sd_read_error; } start -= bank * BLOCKS_PER_BANK; } ret = sd_wait_for_state(SD_TRAN, EC_TRAN_READ_ENTRY); if (ret < 0) goto sd_read_error; MMC_NUMBLK = incount; #ifdef HAVE_HOTSWAP if(currcard->ocr & (1<<30) ) { /* SDHC */ ret = sd_command(SD_READ_MULTIPLE_BLOCK, start, NULL, 0x1c00 | CMDAT_BUSY | CMDAT_DATA_EN | CMDAT_RES_TYPE1); } else #endif { ret = sd_command(SD_READ_MULTIPLE_BLOCK, start * SD_BLOCK_SIZE, NULL, 0x1c00 | CMDAT_BUSY | CMDAT_DATA_EN | CMDAT_RES_TYPE1); } if (ret < 0) goto sd_read_error; /* TODO: Don't assume SD_BLOCK_SIZE == SECTOR_SIZE */ buf_end = (unsigned char *)inbuf + incount * currcard->blocksize; for (buf = inbuf; buf < buf_end;) { /* Wait for the FIFO to be full */ if (sd_poll_status(STAT_RECV_FIFO_FULL, 0x80000)) { copy_read_sectors_fast(&buf); /* Copy one chunk of 16 words */ /* TODO: Switch bank if necessary */ continue; } ret = -EC_FIFO_READ_FULL; goto sd_read_error; } last_disk_activity = current_tick; ret = sd_command(SD_STOP_TRANSMISSION, 0, NULL, CMDAT_RES_TYPE1); if (ret < 0) goto sd_read_error; ret = sd_wait_for_state(SD_TRAN, EC_TRAN_READ_EXIT); if (ret < 0) goto sd_read_error; while (1) { led(false); sd_enable(false); mutex_unlock(&sd_mtx); return ret; sd_read_error: if (sd_status[drive].retry < sd_status[drive].retry_max && ret != -EC_NOCARD) { sd_status[drive].retry++; currcard->initialized = 0; goto sd_read_retry; } } } int sd_write_sectors(IF_MV2(int drive,) unsigned long start, int count, const void* outbuf) { /* Write support is not finished yet */ /* TODO: The standard suggests using ACMD23 prior to writing multiple blocks to improve performance */ #ifndef HAVE_MULTIVOLUME const int drive = 0; #endif int ret; const unsigned char *buf, *buf_end; unsigned int bank; mutex_lock(&sd_mtx); sd_enable(true); led(true); sd_write_retry: if (drive != 0 && !card_detect_target()) { /* no external sd-card inserted */ ret = -EC_NOCARD; goto sd_write_error; } sd_select_device(drive); if (currcard->initialized < 0) { ret = currcard->initialized; goto sd_write_error; } /* Only switch banks with non-SDHC cards */ if((currcard->ocr & (1<<30))==0) { bank = start / BLOCKS_PER_BANK; if (currcard->current_bank != bank) { ret = sd_select_bank(bank); if (ret < 0) goto sd_write_error; } start -= bank * BLOCKS_PER_BANK; } check_time[EC_WRITE_TIMEOUT] = USEC_TIMER; ret = sd_wait_for_state(SD_TRAN, EC_TRAN_WRITE_ENTRY); if (ret < 0) goto sd_write_error; MMC_NUMBLK = count; #ifdef HAVE_HOTSWAP if(currcard->ocr & (1<<30) ) { /* SDHC */ ret = sd_command(SD_WRITE_MULTIPLE_BLOCK, start, NULL, CMDAT_WR_RD | CMDAT_DATA_EN | CMDAT_RES_TYPE1); } else #endif { ret = sd_command(SD_WRITE_MULTIPLE_BLOCK, start*SD_BLOCK_SIZE, NULL, CMDAT_WR_RD | CMDAT_DATA_EN | CMDAT_RES_TYPE1); } if (ret < 0) goto sd_write_error; buf_end = outbuf + count * currcard->blocksize - 2*FIFO_LEN; for (buf = outbuf; buf <= buf_end;) { if (buf == buf_end) { /* Set MMC_SD_STATE to SD_PRG for the last buffer fill */ MMC_SD_STATE = SD_PRG; } copy_write_sectors(&buf); /* Copy one chunk of 16 words */ /* TODO: Switch bank if necessary */ /* Wait for the FIFO to empty */ if (!sd_poll_status(STAT_XMIT_FIFO_EMPTY, 0x80000)) { ret = -EC_FIFO_WR_EMPTY; goto sd_write_error; } } last_disk_activity = current_tick; if (!sd_poll_status(STAT_PRG_DONE, 0x80000)) { ret = -EC_FIFO_WR_DONE; goto sd_write_error; } ret = sd_command(SD_STOP_TRANSMISSION, 0, NULL, CMDAT_RES_TYPE1); if (ret < 0) goto sd_write_error; ret = sd_wait_for_state(SD_TRAN, EC_TRAN_WRITE_EXIT); if (ret < 0) goto sd_write_error; while (1) { led(false); sd_enable(false); mutex_unlock(&sd_mtx); return ret; sd_write_error: if (sd_status[drive].retry < sd_status[drive].retry_max && ret != -EC_NOCARD) { sd_status[drive].retry++; currcard->initialized = 0; goto sd_write_retry; } } } static void sd_thread(void) __attribute__((noreturn)); static void sd_thread(void) { struct queue_event ev; bool idle_notified = false; while (1) { queue_wait_w_tmo(&sd_queue, &ev, HZ); switch ( ev.id ) { #ifdef HAVE_HOTSWAP case SYS_HOTSWAP_INSERTED: case SYS_HOTSWAP_EXTRACTED: fat_lock(); /* lock-out FAT activity first - prevent deadlocking via disk_mount that would cause a reverse-order attempt with another thread */ mutex_lock(&sd_mtx); /* lock-out card activity - direct calls into driver that bypass the fat cache */ /* We now have exclusive control of fat cache and ata */ disk_unmount(1); /* release "by force", ensure file descriptors aren't leaked and any busy ones are invalid if mounting */ /* Force card init for new card, re-init for re-inserted one or * clear if the last attempt to init failed with an error. */ card_info[1].initialized = 0; sd_status[1].retry = 0; if (ev.id == SYS_HOTSWAP_INSERTED) disk_mount(1); queue_broadcast(SYS_FS_CHANGED, 0); /* Access is now safe */ mutex_unlock(&sd_mtx); fat_unlock(); break; #endif case SYS_TIMEOUT: if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ))) { idle_notified = false; } else { /* never let a timer wrap confuse us */ next_yield = USEC_TIMER; if (!idle_notified) { call_storage_idle_notifys(false); idle_notified = true; } } break; case SYS_USB_CONNECTED: usb_acknowledge(SYS_USB_CONNECTED_ACK); /* Wait until the USB cable is extracted again */ usb_wait_for_disconnect(&sd_queue); break; case SYS_USB_DISCONNECTED: usb_acknowledge(SYS_USB_DISCONNECTED_ACK); break; } } } void sd_enable(bool on) { if(on) { DEV_EN |= DEV_ATA; /* Enable controller */ } else { DEV_EN &= ~DEV_ATA; /* Disable controller */ } } #ifdef HAVE_HOTSWAP void card_enable_monitoring_target(bool on) { if (on) { #ifdef SANSA_E200 GPIO_SET_BITWISE(GPIOA_INT_EN, 0x80); #elif defined(SANSA_C200) GPIO_SET_BITWISE(GPIOL_INT_EN, 0x08); #endif } else { #ifdef SANSA_E200 GPIO_CLEAR_BITWISE(GPIOA_INT_EN, 0x80); #elif defined(SANSA_C200) GPIO_CLEAR_BITWISE(GPIOL_INT_EN, 0x08); #endif } } #endif int sd_init(void) { int ret = 0; if (!initialized) mutex_init(&sd_mtx); mutex_lock(&sd_mtx); led(false); if (!initialized) { initialized = true; /* init controller */ #if defined(PHILIPS_SA9200) GPIOA_ENABLE = 0x00; GPIO_SET_BITWISE(GPIOD_ENABLE, 0x01); #else outl(inl(0x70000088) & ~(0x4), 0x70000088); outl(inl(0x7000008c) & ~(0x4), 0x7000008c); GPO32_ENABLE |= 0x4; GPIO_SET_BITWISE(GPIOG_ENABLE, (0x3 << 5)); GPIO_SET_BITWISE(GPIOG_OUTPUT_EN, (0x3 << 5)); GPIO_SET_BITWISE(GPIOG_OUTPUT_VAL, (0x3 << 5)); #endif #ifdef HAVE_HOTSWAP /* enable card detection port - mask interrupt first */ #ifdef SANSA_E200 GPIO_CLEAR_BITWISE(GPIOA_INT_EN, 0x80); GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x80); GPIO_SET_BITWISE(GPIOA_ENABLE, 0x80); #elif defined SANSA_C200 GPIO_CLEAR_BITWISE(GPIOL_INT_EN, 0x08); GPIO_CLEAR_BITWISE(GPIOL_OUTPUT_EN, 0x08); GPIO_SET_BITWISE(GPIOL_ENABLE, 0x08); #endif #endif sd_select_device(0); if (currcard->initialized < 0) ret = currcard->initialized; queue_init(&sd_queue, true); create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0, sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU)); /* enable interupt for the mSD card */ sleep(HZ/10); #ifdef HAVE_HOTSWAP #ifdef SANSA_E200 CPU_INT_EN = HI_MASK; CPU_HI_INT_EN = GPIO0_MASK; GPIOA_INT_LEV = (0x80 << 8) | (~GPIOA_INPUT_VAL & 0x80); GPIOA_INT_CLR = 0x80; #elif defined SANSA_C200 CPU_INT_EN = HI_MASK; CPU_HI_INT_EN = GPIO2_MASK; GPIOL_INT_LEV = (0x08 << 8) | (~GPIOL_INPUT_VAL & 0x08); GPIOL_INT_CLR = 0x08; #endif #endif } mutex_unlock(&sd_mtx); return ret; } tCardInfo *card_get_info_target(int card_no) { return &card_info[card_no]; } bool card_detect_target(void) { #ifdef HAVE_HOTSWAP #ifdef SANSA_E200 return (GPIOA_INPUT_VAL & 0x80) == 0; /* low active */ #elif defined SANSA_C200 return (GPIOL_INPUT_VAL & 0x08) != 0; /* high active */ #endif #else return false; #endif } #ifdef HAVE_HOTSWAP static int sd1_oneshot_callback(struct timeout *tmo) { (void)tmo; /* This is called only if the state was stable for 300ms - check state * and post appropriate event. */ if (card_detect_target()) queue_broadcast(SYS_HOTSWAP_INSERTED, 0); else queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0); return 0; } /* called on insertion/removal interrupt */ void microsd_int(void) { static struct timeout sd1_oneshot; #ifdef SANSA_E200 GPIO_CLEAR_BITWISE(GPIOA_INT_EN, 0x80); GPIOA_INT_LEV = (0x80 << 8) | (~GPIOA_INPUT_VAL & 0x80); GPIOA_INT_CLR = 0x80; GPIO_SET_BITWISE(GPIOA_INT_EN, 0x80); #elif defined SANSA_C200 GPIO_CLEAR_BITWISE(GPIOL_INT_EN, 0x08); GPIOL_INT_LEV = (0x08 << 8) | (~GPIOL_INPUT_VAL & 0x08); GPIOL_INT_CLR = 0x08; GPIO_SET_BITWISE(GPIOL_INT_EN, 0x08); #endif timeout_register(&sd1_oneshot, sd1_oneshot_callback, (3*HZ/10), 0); } #endif /* HAVE_HOTSWAP */ long sd_last_disk_activity(void) { return last_disk_activity; } #ifdef HAVE_HOTSWAP bool sd_removable(IF_MV_NONVOID(int drive)) { #ifndef HAVE_MULTIVOLUME const int drive=0; #endif return (drive==1); } bool sd_present(IF_MV_NONVOID(int drive)) { #ifndef HAVE_MULTIVOLUME const int drive=0; #endif return (card_info[drive].initialized && card_info[drive].numblocks > 0); } #endif