/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2006 Daniel Ankers * Copyright © 2008-2009 Rafaël Carré * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" /* for HAVE_MULTIVOLUME */ #include "fat.h" #include "thread.h" #include "hotswap.h" #include "system.h" #include "kernel.h" #include "cpu.h" #include #include #include #include "as3525v2.h" #include "pl081.h" /* DMA controller */ #include "dma-target.h" /* DMA request lines */ #include "clock-target.h" #include "panic.h" #include "stdbool.h" #include "ata_idle_notify.h" #include "sd.h" #include "lcd.h" #include #include "sysfont.h" /* command flags */ #define MCI_NO_RESP (0<<0) #define MCI_RESP (1<<0) #define MCI_LONG_RESP (1<<1) /* controller registers */ #define SD_BASE 0xC6070000 #define SD_REG(x) (*(volatile unsigned long *) (SD_BASE+x)) #define MCI_CTRL SD_REG(0x00) /* control bits */ #define CTRL_RESET (1<<0) #define FIFO_RESET (1<<1) #define DMA_RESET (1<<2) #define INT_ENABLE (1<<4) #define DMA_ENABLE (1<<5) #define READ_WAIT (1<<6) #define SEND_IRQ_RESP (1<<7) #define ABRT_READ_DATA (1<<8) #define SEND_CCSD (1<<9) #define SEND_AS_CCSD (1<<10) #define EN_OD_PULLUP (1<<24) #define MCI_PWREN SD_REG(0x04) /* power enable */ #define MCI_CLKDIV SD_REG(0x08) /* clock divider */ #define MCI_CLKSRC SD_REG(0x0C) /* clock source */ #define MCI_CLKENA SD_REG(0x10) /* clock enable */ #define MCI_TMOUT SD_REG(0x14) /* timeout */ #define MCI_CTYPE SD_REG(0x18) /* card type */ /* 1 bit per card, set = wide bus */ #define MCI_BLKSIZ SD_REG(0x1C) /* block size */ #define MCI_BYTCNT SD_REG(0x20) /* byte count */ #define MCI_MASK SD_REG(0x24) /* interrupt mask */ #define MCI_ARGUMENT SD_REG(0x28) #define MCI_COMMAND SD_REG(0x2C) /* command bits (bits 5:0 are the command index) */ #define CMD_RESP_EXP_BIT (1<<6) #define CMD_RESP_LENGTH_BIT (1<<7) #define CMD_CHECK_CRC_BIT (1<<8) #define CMD_DATA_EXP_BIT (1<<9) #define CMD_RW_BIT (1<<10) #define CMD_TRANSMODE_BIT (1<<11) #define CMD_SENT_AUTO_STOP_BIT (1<<12) #define CMD_WAIT_PRV_DAT_BIT (1<<13) #define CMD_ABRT_CMD_BIT (1<<14) #define CMD_SEND_INIT_BIT (1<<15) #define CMD_SEND_CLK_ONLY (1<<21) #define CMD_READ_CEATA (1<<22) #define CMD_CCS_EXPECTED (1<<23) #define CMD_DONE_BIT (1<<31) #define MCI_RESP0 SD_REG(0x30) #define MCI_RESP1 SD_REG(0x34) #define MCI_RESP2 SD_REG(0x38) #define MCI_RESP3 SD_REG(0x3C) #define MCI_MASK_STATUS SD_REG(0x40) /* masked interrupt status */ #define MCI_RAW_STATUS SD_REG(0x44) /* raw interrupt status, also used as * status clear */ #define MCI_STATUS SD_REG(0x48) /* * STATUS register * & 0xBA80 = MCI_INT_DCRC | MCI_INT_DRTO | MCI_INT_FRUN | \ * MCI_INT_HLE | MCI_INT_SBE | MCI_INT_EBE * & 8 = MCI_INT_DTO * & 0x428 = MCI_INT_DTO | MCI_INT_RXDR | MCI_INT_HTO * & 0x418 = MCI_INT_DTO | MCI_INT_TXDR | MCI_INT_HTO */ /* interrupt bits */ #define MCI_INT_CRDDET (1<<0) /* card detect */ #define MCI_INT_RE (1<<1) /* response error */ #define MCI_INT_CD (1<<2) /* command done */ #define MCI_INT_DTO (1<<3) /* data transfer over */ #define MCI_INT_TXDR (1<<4) /* tx fifo data request */ #define MCI_INT_RXDR (1<<5) /* rx fifo data request */ #define MCI_INT_RCRC (1<<6) /* response crc error */ #define MCI_INT_DCRC (1<<7) /* data crc error */ #define MCI_INT_RTO (1<<8) /* response timeout */ #define MCI_INT_DRTO (1<<9) /* data read timeout */ #define MCI_INT_HTO (1<<10) /* data starv timeout */ #define MCI_INT_FRUN (1<<11) /* fifo over/underrun */ #define MCI_INT_HLE (1<<12) /* hw locked while error */ #define MCI_INT_SBE (1<<13) /* start bit error */ #define MCI_INT_ACD (1<<14) /* auto command done */ #define MCI_INT_EBE (1<<15) /* end bit error */ #define MCI_INT_SDIO (0xf<<16) #define MCI_ERROR (MCI_INT_RE | MCI_INT_RCRC | MCI_INT_DCRC /*| MCI_INT_RTO*/ \ | MCI_INT_DRTO | MCI_INT_HTO | MCI_INT_FRUN | MCI_INT_HLE \ | MCI_INT_SBE | MCI_INT_EBE) #define MCI_FIFOTH SD_REG(0x4C) /* FIFO threshold */ /* TX watermark : bits 11:0 * RX watermark : bits 27:16 * DMA MTRANS SIZE : bits 30:28 * bits 31, 15:12 : unused */ #define MCI_FIFOTH_MASK 0x8000f000 #define MCI_CDETECT SD_REG(0x50) /* card detect */ #define MCI_WRTPRT SD_REG(0x54) /* write protect */ #define MCI_GPIO SD_REG(0x58) #define MCI_TCBCNT SD_REG(0x5C) /* transferred CIU byte count */ #define MCI_TBBCNT SD_REG(0x60) /* transferred host/DMA to/from bytes */ #define MCI_DEBNCE SD_REG(0x64) /* card detect debounce */ #define MCI_USRID SD_REG(0x68) /* user id */ #define MCI_VERID SD_REG(0x6C) /* version id */ #define MCI_HCON SD_REG(0x70) /* hardware config */ /* bit 0 : card type * bits 5:1 : maximum card index */ #define MCI_BMOD SD_REG(0x80) /* bus mode */ #define MCI_PLDMND SD_REG(0x84) /* poll demand */ #define MCI_DBADDR SD_REG(0x88) /* descriptor base address */ #define MCI_IDSTS SD_REG(0x8C) /* internal DMAC status */ #define MCI_IDINTEN SD_REG(0x90) /* internal DMAC interrupt enable */ #define MCI_DSCADDR SD_REG(0x94) /* current host descriptor address */ #define MCI_BUFADDR SD_REG(0x98) /* current host buffer address */ #define MCI_FIFO ((unsigned long *) (SD_BASE+0x100)) #define UNALIGNED_NUM_SECTORS 10 static unsigned char aligned_buffer[UNALIGNED_NUM_SECTORS* SD_BLOCK_SIZE] __attribute__((aligned(32))); /* align on cache line size */ static unsigned char *uncached_buffer = UNCACHED_ADDR(&aligned_buffer[0]); static int sd_init_card(void); static void init_controller(void); static tCardInfo card_info; /* for compatibility */ static long last_disk_activity = -1; #define MIN_YIELD_PERIOD 5 /* ticks */ static long next_yield = 0; static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x200)/sizeof(long)]; static const char sd_thread_name[] = "ata/sd"; static struct mutex sd_mtx SHAREDBSS_ATTR; static struct event_queue sd_queue; #ifndef BOOTLOADER bool sd_enabled = false; #endif static struct wakeup transfer_completion_signal; static volatile bool retry; static volatile bool data_transfer = false; static inline void mci_delay(void) { int i = 0xffff; while(i--) ; } void INT_NAND(void) { MCI_CTRL &= ~INT_ENABLE; const int status = MCI_MASK_STATUS; MCI_RAW_STATUS = status; /* clear status */ if(status & MCI_ERROR) retry = true; if(data_transfer && status & (MCI_INT_DTO|MCI_ERROR)) wakeup_signal(&transfer_completion_signal); MCI_CTRL |= INT_ENABLE; } static bool send_cmd(const int cmd, const int arg, const int flags, unsigned long *response) { MCI_COMMAND = cmd; if(flags & MCI_RESP) { MCI_COMMAND |= CMD_RESP_EXP_BIT; if(flags & MCI_LONG_RESP) MCI_COMMAND |= CMD_RESP_LENGTH_BIT; } if(cmd == SD_READ_MULTIPLE_BLOCK || cmd == SD_WRITE_MULTIPLE_BLOCK) { MCI_COMMAND |= CMD_WAIT_PRV_DAT_BIT | CMD_DATA_EXP_BIT; if(cmd == SD_WRITE_MULTIPLE_BLOCK) MCI_COMMAND |= CMD_RW_BIT | CMD_CHECK_CRC_BIT; } int clkena = MCI_CLKENA; MCI_CLKENA = 0; MCI_ARGUMENT = arg; MCI_COMMAND |= CMD_DONE_BIT; int max = 0x40000; while(MCI_COMMAND & CMD_DONE_BIT) { if(--max == 0) /* timeout */ { MCI_CLKENA = clkena; return false; } } MCI_CLKENA = clkena; if(flags & MCI_RESP) { if(flags & MCI_LONG_RESP) { /* store the response in little endian order for the words */ response[0] = MCI_RESP3; response[1] = MCI_RESP2; response[2] = MCI_RESP1; response[3] = MCI_RESP0; } else response[0] = MCI_RESP0; } return true; } static int sd_init_card(void) { unsigned long response; unsigned long temp_reg[4]; int max_tries = 100; /* max acmd41 attemps */ bool sd_v2; int i; if(!send_cmd(SD_GO_IDLE_STATE, 0, MCI_NO_RESP, NULL)) return -1; mci_delay(); sd_v2 = false; if(send_cmd(SD_SEND_IF_COND, 0x1AA, MCI_RESP, &response)) if((response & 0xFFF) == 0x1AA) sd_v2 = true; do { /* some MicroSD cards seems to need more delays, so play safe */ mci_delay(); mci_delay(); mci_delay(); /* app_cmd */ if( !send_cmd(SD_APP_CMD, 0, MCI_RESP, &response) || !(response & (1<<5))) { return -2; } /* acmd41 */ if(!send_cmd(SD_APP_OP_COND, (sd_v2 ? 0x40FF8000 : (1<<23)), MCI_RESP, &card_info.ocr)) return -3; } while(!(card_info.ocr & (1<<31)) && max_tries--); if(max_tries < 0) return -4; mci_delay(); mci_delay(); mci_delay(); /* send CID */ if(!send_cmd(SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP, card_info.cid)) return -5; /* send RCA */ if(!send_cmd(SD_SEND_RELATIVE_ADDR, 0, MCI_RESP, &card_info.rca)) return -6; /* send CSD */ if(!send_cmd(SD_SEND_CSD, card_info.rca, MCI_RESP|MCI_LONG_RESP, temp_reg)) return -7; for(i=0; i<4; i++) card_info.csd[3-i] = temp_reg[i]; sd_parse_csd(&card_info); if(!send_cmd(SD_APP_CMD, 0, MCI_RESP, &response) || !send_cmd(42, 0, MCI_NO_RESP, NULL)) /* disconnect the 50 KOhm pull-up resistor on CD/DAT3 */ return -13; if(!send_cmd(SD_APP_CMD, card_info.rca, MCI_NO_RESP, NULL)) return -10; if(!send_cmd(SD_SET_BUS_WIDTH, card_info.rca | 2, MCI_NO_RESP, NULL)) return -11; if(!send_cmd(SD_SELECT_CARD, card_info.rca, MCI_NO_RESP, NULL)) return -9; /* not sent in init_card() by OF */ if(!send_cmd(SD_SET_BLOCKLEN, card_info.blocksize, MCI_NO_RESP, NULL)) return -12; card_info.initialized = 1; return 0; } static void sd_thread(void) __attribute__((noreturn)); static void sd_thread(void) { struct queue_event ev; bool idle_notified = false; while (1) { queue_wait_w_tmo(&sd_queue, &ev, HZ); switch ( ev.id ) { case SYS_TIMEOUT: if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ))) { idle_notified = false; } else { /* never let a timer wrap confuse us */ next_yield = current_tick; if (!idle_notified) { call_storage_idle_notifys(false); idle_notified = true; } } break; #if 0 case SYS_USB_CONNECTED: usb_acknowledge(SYS_USB_CONNECTED_ACK); /* Wait until the USB cable is extracted again */ usb_wait_for_disconnect(&sd_queue); break; case SYS_USB_DISCONNECTED: usb_acknowledge(SYS_USB_DISCONNECTED_ACK); break; #endif } } } static void init_controller(void) { int idx = (MCI_HCON >> 1) & 31; int idx_bits = (1 << idx) -1; MCI_PWREN &= ~idx_bits; MCI_PWREN = idx_bits; mci_delay(); MCI_CLKSRC = 0; MCI_CLKDIV = 0; MCI_CTRL |= CTRL_RESET; while(MCI_CTRL & CTRL_RESET) ; MCI_RAW_STATUS = 0xffffffff; MCI_TMOUT = 0xffffffff; MCI_CTYPE = 0; MCI_CLKENA = idx_bits; MCI_ARGUMENT = 0; MCI_COMMAND = CMD_DONE_BIT|CMD_SEND_CLK_ONLY|CMD_WAIT_PRV_DAT_BIT; while(MCI_COMMAND & CMD_DONE_BIT) ; MCI_DEBNCE = 0xfffff; /* default value */ MCI_FIFOTH &= MCI_FIFOTH_MASK; MCI_FIFOTH |= 0x503f0080; MCI_MASK = 0xffffffff & ~(MCI_INT_ACD|MCI_INT_CRDDET); MCI_CTRL |= INT_ENABLE; } int sd_init(void) { int ret; CGU_PERI |= CGU_MCI_CLOCK_ENABLE; CGU_IDE = (1<<7) /* AHB interface enable */ | (1<<6) /* interface enable */ | ((CLK_DIV(AS3525_PLLA_FREQ, AS3525_IDE_FREQ) - 1) << 2) | 1; /* clock source = PLLA */ CGU_MEMSTICK = (1<<8) | (1<<7) | (CLK_DIV(AS3525_PLLA_FREQ, AS3525_MS_FREQ) -1) | 1; /* ?? */ *(volatile int*)(CGU_BASE+0x3C) = (1<<7) | (CLK_DIV(AS3525_PLLA_FREQ, 24000000) -1) | 1; wakeup_init(&transfer_completion_signal); VIC_INT_ENABLE |= INTERRUPT_NAND; init_controller(); ret = sd_init_card(); if(ret < 0) return ret; /* init mutex */ mutex_init(&sd_mtx); queue_init(&sd_queue, true); create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0, sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU)); #ifndef BOOTLOADER sd_enabled = true; sd_enable(false); #endif return 0; } #ifdef STORAGE_GET_INFO void sd_get_info(struct storage_info *info) { info->sector_size=card_info.blocksize; info->num_sectors=card_info.numblocks; info->vendor="Rockbox"; info->product = "Internal Storage"; info->revision="0.00"; } #endif static int sd_wait_for_state(unsigned int state) { unsigned long response; unsigned int timeout = 100; /* ticks */ long t = current_tick; while (1) { long tick; if(!send_cmd(SD_SEND_STATUS, card_info.rca, MCI_RESP, &response)) return -1; if (((response >> 9) & 0xf) == state) return 0; if(TIME_AFTER(current_tick, t + timeout)) return -10 * ((response >> 9) & 0xf); if (TIME_AFTER((tick = current_tick), next_yield)) { yield(); timeout += current_tick - tick; next_yield = tick + MIN_YIELD_PERIOD; } } } static int sd_transfer_sectors(unsigned long start, int count, void* buf, bool write) { int ret = 0; if((int)buf & 3) panicf("unaligned transfer"); /* skip SanDisk OF */ start += 0xf000; mutex_lock(&sd_mtx); #ifndef BOOTLOADER sd_enable(true); #endif if (card_info.initialized <= 0) { ret = sd_init_card(); if (!(card_info.initialized)) { panicf("card not initialised (%d)", ret); goto sd_transfer_error; } } last_disk_activity = current_tick; ret = sd_wait_for_state(SD_TRAN); if (ret < 0) { static const char *st[9] = { "IDLE", "RDY", "IDENT", "STBY", "TRAN", "DATA", "RCV", "PRG", "DIS" }; if(ret <= -10) panicf("wait for state failed (%s)", st[(-ret / 10) % 9]); else panicf("wait for state failed"); goto sd_transfer_error; } dma_retain(); const int cmd = write ? SD_WRITE_MULTIPLE_BLOCK : SD_READ_MULTIPLE_BLOCK; /* Interrupt handler might set this to true during transfer */ do { void *dma_buf = aligned_buffer; unsigned int transfer = count; if(transfer > UNALIGNED_NUM_SECTORS) transfer = UNALIGNED_NUM_SECTORS; if(write) memcpy(uncached_buffer, buf, transfer * SD_BLOCK_SIZE); retry = false; MCI_BLKSIZ = SD_BLOCK_SIZE; MCI_BYTCNT = transfer * SD_BLOCK_SIZE; MCI_CTRL |= (FIFO_RESET|DMA_RESET); while(MCI_CTRL & (FIFO_RESET|DMA_RESET)) ; MCI_CTRL |= DMA_ENABLE; MCI_MASK = MCI_INT_CD|MCI_INT_DTO|MCI_INT_DCRC|MCI_INT_DRTO| \ MCI_INT_HTO|MCI_INT_FRUN|MCI_INT_HLE|MCI_INT_SBE|MCI_INT_EBE; MCI_FIFOTH &= MCI_FIFOTH_MASK; MCI_FIFOTH |= 0x503f0080; if(card_info.ocr & (1<<30) ) /* SDHC */ ret = send_cmd(cmd, start, MCI_NO_RESP, NULL); else ret = send_cmd(cmd, start * SD_BLOCK_SIZE, MCI_NO_RESP, NULL); if (ret < 0) panicf("transfer multiple blocks failed (%d)", ret); if(write) dma_enable_channel(0, dma_buf, MCI_FIFO, DMA_PERI_SD, DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL); else dma_enable_channel(0, MCI_FIFO, dma_buf, DMA_PERI_SD, DMAC_FLOWCTRL_PERI_PERI_TO_MEM, false, true, 0, DMA_S8, NULL); data_transfer = true; wakeup_wait(&transfer_completion_signal, TIMEOUT_BLOCK); data_transfer = false; last_disk_activity = current_tick; if(!send_cmd(SD_STOP_TRANSMISSION, 0, MCI_NO_RESP, NULL)) { ret = -666; panicf("STOP TRANSMISSION failed"); goto sd_transfer_error; } ret = sd_wait_for_state(SD_TRAN); if (ret < 0) { panicf(" wait for state TRAN failed (%d)", ret); goto sd_transfer_error; } if(!retry) { if(!write) memcpy(buf, uncached_buffer, transfer * SD_BLOCK_SIZE); buf += transfer * SD_BLOCK_SIZE; start += transfer; count -= transfer; } } while(retry || count); dma_release(); #ifndef BOOTLOADER sd_enable(false); #endif mutex_unlock(&sd_mtx); return 0; sd_transfer_error: panicf("transfer error : %d",ret); card_info.initialized = 0; return ret; } int sd_read_sectors(unsigned long start, int count, void* buf) { return sd_transfer_sectors(start, count, buf, false); } int sd_write_sectors(unsigned long start, int count, const void* buf) { #if 1 /* disabled until stable*/ \ || defined(BOOTLOADER) /* we don't need write support in bootloader */ (void) start; (void) count; (void) buf; return -1; #else return sd_transfer_sectors(start, count, (void*)buf, true); #endif } #ifndef BOOTLOADER long sd_last_disk_activity(void) { return last_disk_activity; } void sd_enable(bool on) { /* TODO */ (void)on; return; } tCardInfo *card_get_info_target(int card_no) { (void)card_no; return &card_info; } #endif /* BOOTLOADER */