/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id: lcd-e200v2.c 19453 2008-12-16 02:50:39Z saratoga $ * * Copyright (C) 2004 by Linus Nielsen Feltzing * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* FIXME: Copied from e200v2 lcd driver, unlikely to work, but maybe */ #include "config.h" #include "cpu.h" #include "lcd.h" #include "kernel.h" #include "thread.h" #include #include #include "file.h" #include "debug.h" #include "system.h" #include "font.h" #include "bidi.h" #include "clock-target.h" static bool display_on = false; /* is the display turned on? */ static bool display_flipped = false; static int y_offset = 0; /* needed for flip */ /* register defines */ #define R_START_OSC 0x00 #define R_DRV_OUTPUT_CONTROL 0x01 #define R_DRV_WAVEFORM_CONTROL 0x02 #define R_ENTRY_MODE 0x03 #define R_COMPARE_REG1 0x04 #define R_COMPARE_REG2 0x05 #define R_DISP_CONTROL1 0x07 #define R_DISP_CONTROL2 0x08 #define R_DISP_CONTROL3 0x09 #define R_FRAME_CYCLE_CONTROL 0x0b #define R_EXT_DISP_IF_CONTROL 0x0c #define R_POWER_CONTROL1 0x10 #define R_POWER_CONTROL2 0x11 #define R_POWER_CONTROL3 0x12 #define R_POWER_CONTROL4 0x13 #define R_RAM_ADDR_SET 0x21 #define R_WRITE_DATA_2_GRAM 0x22 #define R_GAMMA_FINE_ADJ_POS1 0x30 #define R_GAMMA_FINE_ADJ_POS2 0x31 #define R_GAMMA_FINE_ADJ_POS3 0x32 #define R_GAMMA_GRAD_ADJ_POS 0x33 #define R_GAMMA_FINE_ADJ_NEG1 0x34 #define R_GAMMA_FINE_ADJ_NEG2 0x35 #define R_GAMMA_FINE_ADJ_NEG3 0x36 #define R_GAMMA_GRAD_ADJ_NEG 0x37 #define R_GAMMA_AMP_ADJ_RES_POS 0x38 #define R_GAMMA_AMP_AVG_ADJ_RES_NEG 0x39 #define R_GATE_SCAN_POS 0x40 #define R_VERT_SCROLL_CONTROL 0x41 #define R_1ST_SCR_DRV_POS 0x42 #define R_2ND_SCR_DRV_POS 0x43 #define R_HORIZ_RAM_ADDR_POS 0x44 #define R_VERT_RAM_ADDR_POS 0x45 #define R_ENTRY_MODE_HORZ 0x7030 #define R_ENTRY_MODE_VERT 0x7038 #define R_ENTRY_MODE_SOLID_VERT 0x1038 /* TODO: Implement this function */ static void lcd_delay(int x) { /* This is just arbitrary - the OF does something more complex */ x *= 1024; while (x--); } /* DBOP initialisation, do what OF does */ static void ams3525_dbop_init(void) { CGU_DBOP = (1<<3) | (CLK_DIV(AS3525_PCLK_FREQ, AS3525_DBOP_FREQ) - 1); DBOP_TIMPOL_01 = 0xe167e167; DBOP_TIMPOL_23 = 0xe167006e; DBOP_CTRL = 0x41008; GPIOB_AFSEL = 0xfc; GPIOC_AFSEL = 0xff; DBOP_TIMPOL_23 = 0x6000e; DBOP_CTRL = 0x51008; DBOP_TIMPOL_01 = 0x6e167; DBOP_TIMPOL_23 = 0xa167e06f; /* TODO: The OF calls some other functions here, but maybe not important */ } static void lcd_write_cmd(int cmd) { /* Write register */ DBOP_CTRL &= ~(1<<14); DBOP_TIMPOL_23 = 0xa167006e; DBOP_DOUT = cmd; /* Wait for fifo to empty */ while ((DBOP_STAT & (1<<10)) == 0); DBOP_TIMPOL_23 = 0xa167e06f; } void lcd_write_data(const fb_data* p_bytes, int count) { while (count--) { DBOP_DOUT = *p_bytes++; /* Wait for fifo to empty */ while ((DBOP_STAT & (1<<10)) == 0); } } static void lcd_write_reg(int reg, int value) { unsigned short data = value; lcd_write_cmd(reg); lcd_write_data(&data, 1); } /*** hardware configuration ***/ void lcd_set_contrast(int val) { (void)val; } void lcd_set_invert_display(bool yesno) { (void)yesno; } static void flip_lcd(bool yesno) { (void)yesno; } /* turn the display upside down (call lcd_update() afterwards) */ void lcd_set_flip(bool yesno) { display_flipped = yesno; y_offset = yesno ? 4 : 0; /* FIXME: Is a y_offset needed? */ if (display_on) flip_lcd(yesno); } static void _display_on(void) { /* Initialisation the display the same way as the original firmware */ lcd_write_reg(R_START_OSC, 0x0001); /* Start Oscilation */ lcd_write_reg(R_DRV_OUTPUT_CONTROL, 0x011b); /* 220 lines, GS=0, SS=1 */ /* B/C = 1: n-line inversion form * EOR = 1: polarity inversion occurs by applying an EOR to odd/even * frame select signal and an n-line inversion signal. * FLD = 01b: 1 field interlaced scan, external display iface */ lcd_write_reg(R_DRV_WAVEFORM_CONTROL, 0x0700); /* Address counter updated in horizontal direction; left to right; * vertical increment horizontal increment. * data format for 8bit transfer or spi = 65k (5,6,5) */ lcd_write_reg(R_ENTRY_MODE, 0x0030); /* Replace data on writing to GRAM */ lcd_write_reg(R_COMPARE_REG1, 0); lcd_write_reg(R_COMPARE_REG2, 0); lcd_write_reg(R_DISP_CONTROL1, 0x0000); /* GON = 0, DTE = 0, D1-0 = 00b */ /* Front porch lines: 2; Back porch lines: 2; */ lcd_write_reg(R_DISP_CONTROL2, 0x0203); /* Scan cycle = 0 frames */ lcd_write_reg(R_DISP_CONTROL3, 0x0000); /* 16 clocks */ lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x0000); /* 18-bit RGB interface (one transfer/pixel) * internal clock operation; * System interface/VSYNC interface */ lcd_write_reg(R_EXT_DISP_IF_CONTROL, 0x0000); /* zero everything*/ lcd_write_reg(R_POWER_CONTROL1, 0x0000); /* STB = 0, SLP = 0 */ lcd_delay(10); /* initialise power supply */ /* DC12-10 = 000b: Step-up1 = clock/8, * DC02-00 = 000b: Step-up2 = clock/16, * VC2-0 = 010b: VciOUT = 0.87 * VciLVL */ lcd_write_reg(R_POWER_CONTROL2, 0x0002); /* VRH3-0 = 1000b: Vreg1OUT = REGP * 1.90 */ lcd_write_reg(R_POWER_CONTROL3, 0x0008); lcd_delay(40); lcd_write_reg(R_POWER_CONTROL4, 0x0000); /* VCOMG = 0 */ /* This register is unknown */ lcd_write_reg(0x56, 0x80f); lcd_write_reg(R_POWER_CONTROL1, 0x4140); lcd_delay(10); lcd_write_reg(R_POWER_CONTROL2, 0x0000); lcd_write_reg(R_POWER_CONTROL3, 0x0013); lcd_delay(20); lcd_write_reg(R_POWER_CONTROL4, 0x6d0e); lcd_delay(20); lcd_write_reg(R_POWER_CONTROL4, 0x6d0e); lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0002); lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0707); lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0182); lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0203); lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0706); lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0006); lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0706); lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0000); lcd_write_reg(R_GAMMA_AMP_ADJ_RES_POS, 0x030f); lcd_write_reg(R_GAMMA_AMP_AVG_ADJ_RES_NEG, 0x0f08); lcd_write_reg(R_RAM_ADDR_SET, 0); lcd_write_reg(R_GATE_SCAN_POS, 0); lcd_write_reg(R_VERT_SCROLL_CONTROL, 0); lcd_write_reg(R_1ST_SCR_DRV_POS, (LCD_HEIGHT-1) << 8); lcd_write_reg(R_2ND_SCR_DRV_POS, (LCD_HEIGHT-1) << 8); lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (LCD_WIDTH-1) << 8); lcd_write_reg(R_VERT_RAM_ADDR_POS, (LCD_HEIGHT-1) << 8); lcd_write_reg(R_DISP_CONTROL1, 0x0037); display_on=true; /* must be done before calling lcd_update() */ lcd_update(); } /* LCD init */ void lcd_init_device(void) { ams3525_dbop_init(); /* Init GPIOs the same as the OF */ GPIOA_DIR |= (1<<5); GPIOA_PIN(5) = 0; GPIOA_PIN(3) = (1<<3); GPIOA_DIR |= (3<<3); GPIOA_PIN(3) = (1<<3); GPIOA_PIN(4) = 0; /*c80b0040 := 0;*/ GPIOA_DIR |= (1<<7); GPIOA_PIN(7) = 0; lcd_delay(1); GPIOA_PIN(5) = (1<<5); lcd_delay(1); _display_on(); } void lcd_enable(bool on) { if(display_on!=on) { if(on) { _display_on(); lcd_activation_call_hook(); } else { /* TODO: Implement off sequence */ display_on=false; } } } bool lcd_active(void) { return display_on; } void lcd_sleep(void) { /* TODO */ } /*** update functions ***/ /* Performance function to blit a YUV bitmap directly to the LCD * src_x, src_y, width and height should be even * x, y, width and height have to be within LCD bounds */ void lcd_blit_yuv(unsigned char * const src[3], int src_x, int src_y, int stride, int x, int y, int width, int height) { (void)src; (void)src_x; (void)src_y; (void)stride; (void)x; (void)y; (void)width; (void)height; } /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_update(void) { if (!display_on) return; lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_HORZ); /* Set start position and window */ lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (LCD_WIDTH-1) << 8); lcd_write_reg(R_VERT_RAM_ADDR_POS, ((y_offset + LCD_HEIGHT-1) << 8) | y_offset); lcd_write_reg(R_RAM_ADDR_SET, (y_offset) << 8); lcd_write_cmd(R_WRITE_DATA_2_GRAM); lcd_write_data((unsigned short *)lcd_framebuffer, LCD_WIDTH*LCD_HEIGHT); } /* lcd_update */ /* Update a fraction of the display. */ void lcd_update_rect(int x, int y, int width, int height) { int ymax; const unsigned short *ptr; if (!display_on) return; if (x + width > LCD_WIDTH) width = LCD_WIDTH - x; /* Clip right */ if (x < 0) width += x, x = 0; /* Clip left */ if (width <= 0) return; /* nothing left to do */ ymax = y + height; if (ymax > LCD_HEIGHT) ymax = LCD_HEIGHT; /* Clip bottom */ if (y < 0) y = 0; /* Clip top */ if (y >= ymax) return; /* nothing left to do */ lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_HORZ); /* Set start position and window */ lcd_write_reg(R_HORIZ_RAM_ADDR_POS, ((x + width-1) << 8) | x); lcd_write_reg(R_VERT_RAM_ADDR_POS, ((y_offset + y + height - 1) << 8) | (y_offset + y)); lcd_write_reg(R_RAM_ADDR_SET, ((y + y_offset) << 8) | x); lcd_write_cmd(R_WRITE_DATA_2_GRAM); ptr = (unsigned short *)&lcd_framebuffer[y][x]; do { lcd_write_data(ptr, width); ptr += LCD_WIDTH; } while (++y < ymax); } /* lcd_update_rect */