/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2004 by Jens Arnold * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include "ata.h" #include "ata_mmc.h" #include "kernel.h" #include "thread.h" #include "led.h" #include "sh7034.h" #include "system.h" #include "debug.h" #include "panic.h" #include "usb.h" #include "power.h" #include "string.h" #include "hwcompat.h" #include "adc.h" #include "bitswap.h" #include "disk.h" /* for mount/unmount */ #define SECTOR_SIZE 512 /* Command definitions */ #define CMD_GO_IDLE_STATE 0x40 /* R1 */ #define CMD_SEND_OP_COND 0x41 /* R1 */ #define CMD_SEND_CSD 0x49 /* R1 */ #define CMD_SEND_CID 0x4a /* R1 */ #define CMD_STOP_TRANSMISSION 0x4c /* R1 */ #define CMD_SEND_STATUS 0x4d /* R2 */ #define CMD_READ_SINGLE_BLOCK 0x51 /* R1 */ #define CMD_READ_MULTIPLE_BLOCK 0x52 /* R1 */ #define CMD_WRITE_BLOCK 0x58 /* R1b */ #define CMD_WRITE_MULTIPLE_BLOCK 0x59 /* R1b */ #define CMD_READ_OCR 0x7a /* R3 */ /* Response formats: R1 = single byte, msb=0, various error flags R1b = R1 + busy token(s) R2 = 2 bytes (1st byte identical to R1), additional flags R3 = 5 bytes (R1 + OCR register) */ #define R1_PARAMETER_ERR 0x40 #define R1_ADDRESS_ERR 0x20 #define R1_ERASE_SEQ_ERR 0x10 #define R1_COM_CRC_ERR 0x08 #define R1_ILLEGAL_CMD 0x04 #define R1_ERASE_RESET 0x02 #define R1_IN_IDLE_STATE 0x01 #define R2_OUT_OF_RANGE 0x80 #define R2_ERASE_PARAM 0x40 #define R2_WP_VIOLATION 0x20 #define R2_CARD_ECC_FAIL 0x10 #define R2_CC_ERROR 0x08 #define R2_ERROR 0x04 #define R2_ERASE_SKIP 0x02 #define R2_CARD_LOCKED 0x01 /* Data start tokens */ #define DT_START_BLOCK 0xfe #define DT_START_WRITE_MULTIPLE 0xfc #define DT_STOP_TRAN 0xfd /* for compatibility */ bool old_recorder = false; /* FIXME: get rid of this cross-dependency */ int ata_spinup_time = 0; char ata_device = 0; /* device 0 (master) or 1 (slave) */ int ata_io_address = 0; /* 0x300 or 0x200, only valid on recorder */ long last_disk_activity = -1; /* private variables */ static struct mutex mmc_mutex; #ifdef HAVE_HOTSWAP static long mmc_stack[DEFAULT_STACK_SIZE/sizeof(long)]; static const char mmc_thread_name[] = "mmc"; static struct event_queue mmc_queue; #endif static bool initialized = false; static bool new_mmc_circuit; static bool delayed_write = false; static unsigned char delayed_sector[SECTOR_SIZE]; static int delayed_sector_num; static enum { SER_POLL_WRITE, SER_POLL_READ, SER_DISABLED } serial_mode; static const unsigned char dummy[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; /* 2 buffers for writing, include start token and dummy crc and an extra * byte to keep word alignment */ static unsigned char sector_buffer[2][(SECTOR_SIZE+4)]; static int current_buffer = 0; static tCardInfo card_info[2]; #ifndef HAVE_MULTIVOLUME static int current_card = 0; #endif static bool last_mmc_status = false; static int countdown; /* for mmc switch debouncing */ static bool usb_activity; /* monitoring the USB bridge */ static long last_usb_activity; /* private function declarations */ static int select_card(int card_no); static void deselect_card(void); static void setup_sci1(int bitrate_register); static void set_sci1_poll_read(void); static void write_transfer(const unsigned char *buf, int len) __attribute__ ((section(".icode"))); static void read_transfer(unsigned char *buf, int len) __attribute__ ((section(".icode"))); static unsigned char poll_byte(int timeout); static unsigned char poll_busy(int timeout); static int send_cmd(int cmd, unsigned long parameter, unsigned char *response); static int receive_cxd(unsigned char *buf); static int initialize_card(int card_no); static int receive_sector(unsigned char *inbuf, unsigned char *swapbuf, int timeout); static void swapcopy_sector(const unsigned char *buf); static int send_sector(const unsigned char *nextbuf, int timeout); static int send_single_sector(const unsigned char *buf, int timeout); static void mmc_tick(void); /* implementation */ void mmc_select_clock(int card_no) { /* set clock gate for external card / reset for internal card if the * MMC clock polarity bit is 0, vice versa if it is 1 */ if ((card_no != 0) ^ new_mmc_circuit) or_b(0x10, &PADRH); /* set clock gate PA12 */ else and_b(~0x10, &PADRH); /* clear clock gate PA12 */ } static int select_card(int card_no) { mmc_select_clock(card_no); last_disk_activity = current_tick; if (!card_info[card_no].initialized) { setup_sci1(7); /* Initial rate: 375 kbps (need <= 400 per mmc specs) */ write_transfer(dummy, 10); /* allow the card to synchronize */ while (!(SSR1 & SCI_TEND)); } if (card_no == 0) /* internal */ and_b(~0x04, &PADRH); /* assert CS */ else /* external */ and_b(~0x02, &PADRH); /* assert CS */ if (card_info[card_no].initialized) { setup_sci1(card_info[card_no].bitrate_register); return 0; } else { return initialize_card(card_no); } } static void deselect_card(void) { while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ or_b(0x06, &PADRH); /* deassert CS (both cards) */ last_disk_activity = current_tick; } static void setup_sci1(int bitrate_register) { while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; /* disable serial port */ SMR1 = SYNC_MODE; /* no prescale */ BRR1 = bitrate_register; SSR1 = 0; SCR1 = SCI_TE; /* enable transmitter */ serial_mode = SER_POLL_WRITE; } static void set_sci1_poll_read(void) { while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; /* disable transmitter (& receiver) */ SCR1 = (SCI_TE|SCI_RE); /* re-enable transmitter & receiver */ while (!(SSR1 & SCI_TEND)); /* wait for SCI init completion (!) */ serial_mode = SER_POLL_READ; TDR1 = 0xFF; /* send do-nothing while reading */ } static void write_transfer(const unsigned char *buf, int len) { const unsigned char *buf_end = buf + len; register unsigned char data; if (serial_mode != SER_POLL_WRITE) { while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; /* disable transmitter & receiver */ SSR1 = 0; /* clear all flags */ SCR1 = SCI_TE; /* enable transmitter only */ serial_mode = SER_POLL_WRITE; } while (buf < buf_end) { data = fliptable[(signed char)(*buf++)]; /* bitswap */ while (!(SSR1 & SCI_TDRE)); /* wait for end of transfer */ TDR1 = data; /* write byte */ SSR1 = 0; /* start transmitting */ } } /* don't call this with len == 0 */ static void read_transfer(unsigned char *buf, int len) { unsigned char *buf_end = buf + len - 1; register signed char data; if (serial_mode != SER_POLL_READ) set_sci1_poll_read(); SSR1 = 0; /* start receiving first byte */ while (buf < buf_end) { while (!(SSR1 & SCI_RDRF)); /* wait for data */ data = RDR1; /* read byte */ SSR1 = 0; /* start receiving */ *buf++ = fliptable[data]; /* bitswap */ } while (!(SSR1 & SCI_RDRF)); /* wait for last byte */ *buf = fliptable[(signed char)(RDR1)]; /* read & bitswap */ } /* returns 0xFF on timeout, timeout is in bytes */ static unsigned char poll_byte(int timeout) { int i; unsigned char data = 0; /* stop the compiler complaining */ if (serial_mode != SER_POLL_READ) set_sci1_poll_read(); i = 0; do { SSR1 = 0; /* start receiving */ while (!(SSR1 & SCI_RDRF)); /* wait for data */ data = RDR1; /* read byte */ } while ((data == 0xFF) && (++i < timeout)); return fliptable[(signed char)data]; } /* returns 0 on timeout, timeout is in bytes */ static unsigned char poll_busy(int timeout) { int i; unsigned char data, dummy; if (serial_mode != SER_POLL_READ) set_sci1_poll_read(); /* get data response */ SSR1 = 0; /* start receiving */ while (!(SSR1 & SCI_RDRF)); /* wait for data */ data = fliptable[(signed char)(RDR1)]; /* read byte */ /* wait until the card is ready again */ i = 0; do { SSR1 = 0; /* start receiving */ while (!(SSR1 & SCI_RDRF)); /* wait for data */ dummy = RDR1; /* read byte */ } while ((dummy != 0xFF) && (++i < timeout)); return (dummy == 0xFF) ? data : 0; } /* Send MMC command and get response */ static int send_cmd(int cmd, unsigned long parameter, unsigned char *response) { unsigned char command[] = {0x40, 0x00, 0x00, 0x00, 0x00, 0x95, 0xFF}; command[0] = cmd; if (parameter != 0) { command[1] = (parameter >> 24) & 0xFF; command[2] = (parameter >> 16) & 0xFF; command[3] = (parameter >> 8) & 0xFF; command[4] = parameter & 0xFF; } write_transfer(command, 7); response[0] = poll_byte(20); if (response[0] != 0x00) { write_transfer(dummy, 1); return -10; } switch (cmd) { case CMD_SEND_CSD: /* R1 response, leave open */ case CMD_SEND_CID: case CMD_READ_SINGLE_BLOCK: case CMD_READ_MULTIPLE_BLOCK: break; case CMD_SEND_STATUS: /* R2 response, close with dummy */ read_transfer(response + 1, 1); write_transfer(dummy, 1); break; case CMD_READ_OCR: /* R3 response, close with dummy */ read_transfer(response + 1, 4); write_transfer(dummy, 1); break; default: /* R1 response, close with dummy */ write_transfer(dummy, 1); break; /* also catches block writes */ } return 0; } /* Receive CID/ CSD data (16 bytes) */ static int receive_cxd(unsigned char *buf) { if (poll_byte(20) != DT_START_BLOCK) { write_transfer(dummy, 1); return -11; /* not start of data */ } read_transfer(buf, 16); write_transfer(dummy, 3); /* 2 bytes dontcare crc + 1 byte trailer */ return 0; } /* helper function to extract n (<=32) bits from an arbitrary position. counting from MSB to LSB */ unsigned long mmc_extract_bits( const unsigned long *p, /* the start of the bitfield array */ unsigned int start, /* bit no. to start reading */ unsigned int size) /* how many bits to read */ { unsigned int bit_index; unsigned int bits_to_use; unsigned long mask; unsigned long result; if (size == 1) { /* short cut */ return ((p[start/32] >> (31 - (start % 32))) & 1); } result = 0; while (size) { bit_index = start % 32; bits_to_use = MIN(32 - bit_index, size); mask = 0xFFFFFFFF >> (32 - bits_to_use); result <<= bits_to_use; /* start last round */ result |= (p[start/32] >> (32 - bits_to_use - bit_index)) & mask; start += bits_to_use; size -= bits_to_use; } return result; } static int initialize_card(int card_no) { int i, temp; unsigned char response[5]; tCardInfo *card = &card_info[card_no]; static const char mantissa[] = { /* *10 */ 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 }; static const int exponent[] = { /* use varies */ 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 }; /* switch to SPI mode */ send_cmd(CMD_GO_IDLE_STATE, 0, response); if (response[0] != 0x01) return -1; /* error response */ /* initialize card */ for (i = 0; i < 100; i++) /* timeout 1 sec */ { sleep(1); if (send_cmd(CMD_SEND_OP_COND, 0, response) == 0) break; } if (response[0] != 0x00) return -2; /* not ready */ /* get OCR register */ if (send_cmd(CMD_READ_OCR, 0, response)) return -3; card->ocr = (response[1] << 24) + (response[2] << 16) + (response[3] << 8) + response[4]; /* check voltage */ if (!(card->ocr & 0x00100000)) /* 3.2 .. 3.3 V */ return -4; /* get CSD register */ if (send_cmd(CMD_SEND_CSD, 0, response)) return -5; if (receive_cxd((unsigned char*)card->csd)) return -6; /* check block size */ if ((1 << mmc_extract_bits(card->csd, 44, 4)) != SECTOR_SIZE) return -7; /* max transmission speed, clock divider */ temp = mmc_extract_bits(card->csd, 29, 3); temp = (temp > 3) ? 3 : temp; card->speed = mantissa[mmc_extract_bits(card->csd, 25, 4)] * exponent[temp + 4]; card->bitrate_register = (FREQ/4-1) / card->speed; /* NSAC, TSAC, read timeout */ card->nsac = 100 * mmc_extract_bits(card->csd, 16, 8); card->tsac = mantissa[mmc_extract_bits(card->csd, 9, 4)]; temp = mmc_extract_bits(card->csd, 13, 3); card->read_timeout = ((FREQ/4) / (card->bitrate_register + 1) * card->tsac / exponent[9 - temp] + (10 * card->nsac)); card->read_timeout /= 8; /* clocks -> bytes */ card->tsac = card->tsac * exponent[temp] / 10; /* r2w_factor, write timeout */ temp = mmc_extract_bits(card->csd, 99, 3); temp = (temp > 5) ? 5 : temp; card->r2w_factor = 1 << temp; card->write_timeout = card->read_timeout * card->r2w_factor; /* card size */ card->numsectors = (mmc_extract_bits(card->csd, 54, 12) + 1) * (1 << (mmc_extract_bits(card->csd, 78, 3)+2)); /* switch to full speed */ setup_sci1(card->bitrate_register); /* get CID register */ if (send_cmd(CMD_SEND_CID, 0, response)) return -8; if (receive_cxd((unsigned char*)card->cid)) return -9; card->initialized = true; return 0; } tCardInfo *mmc_card_info(int card_no) { tCardInfo *card = &card_info[card_no]; if (!card->initialized && ((card_no == 0) || mmc_detect())) { mutex_lock(&mmc_mutex); select_card(card_no); deselect_card(); mutex_unlock(&mmc_mutex); } return card; } /* Receive one sector with dma, possibly swapping the previously received * sector in the background */ static int receive_sector(unsigned char *inbuf, unsigned char *swapbuf, int timeout) { if (poll_byte(timeout) != DT_START_BLOCK) { write_transfer(dummy, 1); return -12; /* not start of data */ } while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; /* disable serial */ SSR1 = 0; /* clear all flags */ /* setup DMA channel 2 */ CHCR2 = 0; /* disable */ SAR2 = RDR1_ADDR; DAR2 = (unsigned long) inbuf; DTCR2 = SECTOR_SIZE; CHCR2 = 0x4601; /* fixed source address, RXI1, enable */ DMAOR = 0x0001; SCR1 = (SCI_RE|SCI_RIE); /* kick off DMA */ /* dma receives 2 bytes more than DTCR2, but the last 2 bytes are not * stored. The first extra byte is available from RDR1 after the DMA ends, * the second one is lost because of the SCI overrun. However, this * behaviour conveniently discards the crc. */ if (swapbuf != NULL) /* bitswap previous sector */ bitswap(swapbuf, SECTOR_SIZE); yield(); /* be nice */ while (!(CHCR2 & 0x0002)); /* wait for end of DMA */ while (!(SSR1 & SCI_ORER)); /* wait for the trailing bytes */ SCR1 = 0; serial_mode = SER_DISABLED; write_transfer(dummy, 1); /* send trailer */ return 0; } /* copies one sector into the next-current write buffer, then bitswaps */ static void swapcopy_sector(const unsigned char *buf) { unsigned char *curbuf; current_buffer ^= 1; /* toggles between 0 and 1 */ curbuf = sector_buffer[current_buffer]; curbuf[1] = DT_START_WRITE_MULTIPLE; curbuf[(SECTOR_SIZE+2)] = curbuf[(SECTOR_SIZE+3)] = 0xFF; /* dummy crc */ memcpy(curbuf + 2, buf, SECTOR_SIZE); bitswap(curbuf + 1, (SECTOR_SIZE+1)); } /* Send one sector with dma from the current sector buffer, possibly preparing * the next sector within the other sector buffer in the background. Use * for multisector transfer only */ static int send_sector(const unsigned char *nextbuf, int timeout) { int ret = 0; while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; /* disable serial */ SSR1 = 0; /* clear all flags */ /* setup DMA channel 2 */ CHCR2 = 0; /* disable */ SAR2 = (unsigned long)(sector_buffer[current_buffer] + 1); DAR2 = TDR1_ADDR; DTCR2 = (SECTOR_SIZE+3); CHCR2 = 0x1701; /* fixed dest. address, TXI1, enable */ DMAOR = 0x0001; SCR1 = (SCI_TE|SCI_TIE); /* kick off DMA */ if (nextbuf != NULL) /* prepare next sector */ swapcopy_sector(nextbuf); yield(); /* be nice */ while (!(CHCR2 & 0x0002)); /* wait for end of DMA */ while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; serial_mode = SER_DISABLED; if ((poll_busy(timeout) & 0x1F) != 0x05) /* something went wrong */ ret = -13; write_transfer(dummy, 1); return ret; } /* Send one sector with polled i/o. Use for single sector transfers only. */ static int send_single_sector(const unsigned char *buf, int timeout) { int ret = 0; unsigned char start_token = DT_START_BLOCK; write_transfer(&start_token, 1); write_transfer(buf, SECTOR_SIZE); write_transfer(dummy, 2); /* crc - dontcare */ if ((poll_busy(timeout) & 0x1F) != 0x05) /* something went wrong */ ret = -14; write_transfer(dummy, 1); return ret; } int ata_read_sectors(IF_MV2(int drive,) unsigned long start, int incount, void* inbuf) { int ret = 0; int last_sector; unsigned long addr; unsigned char response; void *inbuf_prev = NULL; tCardInfo *card; addr = start * SECTOR_SIZE; mutex_lock(&mmc_mutex); led(true); #ifdef HAVE_MULTIVOLUME card = &card_info[drive]; ret = select_card(drive); #else card = &card_info[current_card]; ret = select_card(current_card); #endif if (start + incount > card->numsectors) panicf("Reading past end of card\n"); /* some cards don't like reading the very last sector with * CMD_READ_MULTIPLE_BLOCK, so make sure this sector is always * read with CMD_READ_SINGLE_BLOCK. */ last_sector = (start + incount == card->numsectors) ? 1 : 0; if (ret == 0) { if (incount > 1) { ret = send_cmd(CMD_READ_MULTIPLE_BLOCK, addr, &response); for (; (incount > last_sector) && (ret == 0); incount--) { ret = receive_sector(inbuf, inbuf_prev, card->read_timeout); inbuf_prev = inbuf; inbuf += SECTOR_SIZE; last_disk_activity = current_tick; } if (ret == 0) ret = send_cmd(CMD_STOP_TRANSMISSION, 0, &response); } if (incount && (ret == 0)) { ret = send_cmd(CMD_READ_SINGLE_BLOCK, addr, &response); if (ret == 0) { ret = receive_sector(inbuf, inbuf_prev, card->read_timeout); inbuf_prev = inbuf; last_disk_activity = current_tick; } } if (ret == 0) bitswap(inbuf_prev, SECTOR_SIZE); } deselect_card(); led(false); mutex_unlock(&mmc_mutex); /* only flush if reading went ok */ if ( (ret == 0) && delayed_write ) ata_flush(); return ret; } int ata_write_sectors(IF_MV2(int drive,) unsigned long start, int count, const void* buf) { int ret = 0; unsigned long addr; unsigned char response; tCardInfo *card; if (start == 0) panicf("Writing on sector 0\n"); addr = start * SECTOR_SIZE; mutex_lock(&mmc_mutex); led(true); #ifdef HAVE_MULTIVOLUME card = &card_info[drive]; ret = select_card(drive); #else card = &card_info[current_card]; ret = select_card(current_card); #endif if (start + count > card->numsectors) panicf("Writing past end of card\n"); if (ret == 0) { if (count == 1) { ret = send_cmd(CMD_WRITE_BLOCK, addr, &response); if (ret == 0) ret = send_single_sector(buf, card->write_timeout); last_disk_activity = current_tick; } else { swapcopy_sector(buf); /* prepare first sector */ ret = send_cmd(CMD_WRITE_MULTIPLE_BLOCK, addr, &response); for (; (count > 1) && (ret == 0); count--) { buf += SECTOR_SIZE; ret = send_sector(buf, card->write_timeout); last_disk_activity = current_tick; } if (ret == 0) { ret = send_sector(NULL, card->write_timeout); if (ret == 0) { response = DT_STOP_TRAN; write_transfer(&response, 1); poll_busy(card->write_timeout); } last_disk_activity = current_tick; } } } deselect_card(); led(false); mutex_unlock(&mmc_mutex); /* only flush if writing went ok */ if ( (ret == 0) && delayed_write ) ata_flush(); return ret; } /* While there is no spinup, the delayed write is still here to avoid wearing the flash unnecessarily */ extern void ata_delayed_write(unsigned long sector, const void* buf) { memcpy(delayed_sector, buf, SECTOR_SIZE); delayed_sector_num = sector; delayed_write = true; } /* write the delayed sector to volume 0 */ extern void ata_flush(void) { if ( delayed_write ) { DEBUGF("ata_flush()\n"); delayed_write = false; ata_write_sectors(IF_MV2(0,) delayed_sector_num, 1, delayed_sector); } } void ata_spindown(int seconds) { (void)seconds; } bool ata_disk_is_active(void) { /* this is correct unless early return from write gets implemented */ return mmc_mutex.locked; } int ata_standby(int time) { (void)time; return 0; } int ata_sleep(void) { return 0; } void ata_spin(void) { } #ifdef HAVE_HOTSWAP static void mmc_thread(void) { struct event ev; while (1) { queue_wait(&mmc_queue, &ev); switch ( ev.id ) { case SYS_USB_CONNECTED: usb_acknowledge(SYS_USB_CONNECTED_ACK); /* Wait until the USB cable is extracted again */ usb_wait_for_disconnect(&mmc_queue); break; case SYS_MMC_INSERTED: disk_mount(1); /* mount MMC */ queue_broadcast(SYS_FS_CHANGED, NULL); break; case SYS_MMC_EXTRACTED: disk_unmount(1); /* release "by force" */ queue_broadcast(SYS_FS_CHANGED, NULL); break; } } } #endif /* #ifdef HAVE_HOTSWAP */ bool mmc_detect(void) { return adc_read(ADC_MMC_SWITCH) < 0x200 ? true : false; } bool mmc_usb_active(int delayticks) { /* reading "inactive" is delayed by user-supplied monoflop value */ return (usb_activity || TIME_BEFORE(current_tick, last_usb_activity + delayticks)); } static void mmc_tick(void) { bool current_status; if (new_mmc_circuit) /* USB bridge activity is 0 on idle, ~527 on active */ current_status = adc_read(ADC_USB_ACTIVE) > 0x100; else current_status = adc_read(ADC_USB_ACTIVE) < 0x190; if (!current_status && usb_activity) last_usb_activity = current_tick; usb_activity = current_status; current_status = mmc_detect(); /* Only report when the status has changed */ if (current_status != last_mmc_status) { last_mmc_status = current_status; countdown = 30; } else { /* Count down until it gets negative */ if (countdown >= 0) countdown--; if (countdown == 0) { if (current_status) { queue_broadcast(SYS_MMC_INSERTED, NULL); } else { queue_broadcast(SYS_MMC_EXTRACTED, NULL); card_info[1].initialized = false; } } } } int ata_soft_reset(void) { return 0; } void ata_enable(bool on) { PBCR1 &= ~0x0CF0; /* PB13, PB11 and PB10 become GPIOs, if not modified below */ PACR2 &= ~0x4000; /* use PA7 (bridge reset) as GPIO */ if (on) { PBCR1 |= 0x08A0; /* as SCK1, TxD1, RxD1 */ IPRE &= 0x0FFF; /* disable SCI1 interrupts for the CPU */ } and_b(~0x80, &PADRL); /* assert reset */ sleep(HZ/20); or_b(0x80, &PADRL); /* de-assert reset */ sleep(HZ/20); card_info[0].initialized = false; card_info[1].initialized = false; } int ata_init(void) { int rc = 0; mutex_init(&mmc_mutex); led(false); /* Port setup */ PACR1 &= ~0x0F00; /* GPIO function for PA12, /IRQ1 for PA13 */ PACR1 |= 0x0400; PADR |= 0x0680; /* set all the selects + reset high (=inactive) */ PAIOR |= 0x1680; /* make outputs for them and the PA12 clock gate */ PBDR |= 0x2C00; /* SCK1, TxD1 and RxD1 high when GPIO CHECKME: mask */ PBIOR |= 0x2000; /* SCK1 output */ PBIOR &= ~0x0C00; /* TxD1, RxD1 input */ last_mmc_status = mmc_detect(); #ifndef HAVE_MULTIVOLUME if (last_mmc_status) { /* MMC inserted */ current_card = 1; } else { /* no MMC, use internal memory */ current_card = 0; } #endif ata_enable(true); if ( !initialized ) { new_mmc_circuit = ((read_hw_mask() & MMC_CLOCK_POLARITY) != 0); #ifdef HAVE_HOTSWAP queue_init(&mmc_queue); create_thread(mmc_thread, mmc_stack, sizeof(mmc_stack), mmc_thread_name); #endif tick_add_task(mmc_tick); initialized = true; } return rc; }