/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Akio Idehara, Andrew Mahone * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* * Implementation of area average and linear row and vertical scalers, and * nearest-neighbor grey scaler (C) 2008 Andrew Mahone * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include #include #include #include #include "inttypes.h" #ifndef PLUGIN #include "debug.h" #endif #include "lcd.h" #include "file.h" #ifdef HAVE_REMOTE_LCD #include "lcd-remote.h" #endif #ifdef ROCKBOX_DEBUG_SCALERS #define SDEBUGF DEBUGF #else #define SDEBUGF(...) #endif #ifndef __PCTOOL__ #include "config.h" #include "system.h" #include #include "resize.h" #else #undef DEBUGF #define DEBUGF(...) #endif /* calculate the maximum dimensions which will preserve the aspect ration of src while fitting in the constraints passed in dst, and store result in dst, returning 0 if rounding and 1 if not rounding. */ int recalc_dimension(struct dim *dst, struct dim *src) { /* This only looks backwards. The input image size is being pre-scaled by * the inverse of the pixel aspect ratio, so that once the size it scaled * to meet the output constraints, the scaled image will have appropriate * proportions. */ int sw = src->width * LCD_PIXEL_ASPECT_HEIGHT; int sh = src->height * LCD_PIXEL_ASPECT_WIDTH; int tmp; if (dst->width <= 0) dst->width = LCD_WIDTH; if (dst->height <= 0) dst->height = LCD_HEIGHT; #ifndef HAVE_UPSCALER if (dst->width > sw || dst->height > sh) { dst->width = sw; dst->height = sh; } if (sw == dst->width && sh == dst->height) return 1; #endif tmp = (sw * dst->height + (sh >> 1)) / sh; if (tmp > dst->width) dst->height = (sh * dst->width + (sw >> 1)) / sw; else dst->width = tmp; return src->width == dst->width && src->height == dst->height; } /* All of these scalers use variations of Bresenham's algorithm to convert from their input to output coordinates. The error value is shifted from the "classic" version such that it is a useful input to the scaling calculation. */ #ifdef HAVE_LCD_COLOR /* dither + pack on channel of RGB565, R an B share a packing macro */ #define PACKRB(v, delta) ((31 * v + (v >> 3) + delta) >> 8) #define PACKG(g, delta) ((63 * g + (g >> 2) + delta) >> 8) #endif /* read new img_part unconditionally, return false on failure */ #define FILL_BUF_INIT(img_part, store_part, args) { \ img_part = store_part(args); \ if (img_part == NULL) \ return false; \ } /* read new img_part if current one is empty, return false on failure */ #define FILL_BUF(img_part, store_part, args) { \ if (img_part->len == 0) \ img_part = store_part(args); \ if (img_part == NULL) \ return false; \ } /* Set up rounding and scale factors for horizontal area scaler */ static inline void scale_h_area_setup(struct scaler_context *ctx) { /* sum is output value * src->width */ SDEBUGF("scale_h_area_setup\n"); ctx->divisor = ctx->src->width; } /* horizontal area average scaler */ static bool scale_h_area(void *out_line_ptr, struct scaler_context *ctx, bool accum) { SDEBUGF("scale_h_area\n"); unsigned int ix, ox, oxe, mul; #ifdef HAVE_LCD_COLOR struct uint32_rgb rgbvalacc = { 0, 0, 0 }, rgbvaltmp = { 0, 0, 0 }, *out_line = (struct uint32_rgb *)out_line_ptr; #else uint32_t acc = 0, tmp = 0, *out_line = (uint32_t*)out_line_ptr; #endif struct img_part *part; FILL_BUF_INIT(part,ctx->store_part,ctx->args); ox = 0; oxe = 0; mul = 0; /* give other tasks a chance to run */ yield(); for (ix = 0; ix < (unsigned int)ctx->src->width; ix++) { oxe += ctx->bm->width; /* end of current area has been reached */ /* fill buffer if needed */ FILL_BUF(part,ctx->store_part,ctx->args); #ifdef HAVE_LCD_COLOR if (oxe >= (unsigned int)ctx->src->width) { /* "reset" error, which now represents partial coverage of next pixel by the next area */ oxe -= ctx->src->width; /* add saved partial pixel from start of area */ rgbvalacc.r = rgbvalacc.r * ctx->bm->width + rgbvaltmp.r * mul; rgbvalacc.g = rgbvalacc.g * ctx->bm->width + rgbvaltmp.g * mul; rgbvalacc.b = rgbvalacc.b * ctx->bm->width + rgbvaltmp.b * mul; /* get new pixel , then add its partial coverage to this area */ rgbvaltmp.r = part->buf->red; rgbvaltmp.g = part->buf->green; rgbvaltmp.b = part->buf->blue; mul = ctx->bm->width - oxe; rgbvalacc.r += rgbvaltmp.r * mul; rgbvalacc.g += rgbvaltmp.g * mul; rgbvalacc.b += rgbvaltmp.b * mul; /* store or accumulate to output row */ if (accum) { rgbvalacc.r += out_line[ox].r; rgbvalacc.g += out_line[ox].g; rgbvalacc.b += out_line[ox].b; } out_line[ox].r = rgbvalacc.r; out_line[ox].g = rgbvalacc.g; out_line[ox].b = rgbvalacc.b; /* reset accumulator */ rgbvalacc.r = 0; rgbvalacc.g = 0; rgbvalacc.b = 0; mul = ctx->bm->width - mul; ox += 1; /* inside an area */ } else { /* add pixel value to accumulator */ rgbvalacc.r += part->buf->red; rgbvalacc.g += part->buf->green; rgbvalacc.b += part->buf->blue; } #else if (oxe >= (unsigned int)ctx->src->width) { /* "reset" error, which now represents partial coverage of next pixel by the next area */ oxe -= ctx->src->width; /* add saved partial pixel from start of area */ acc = acc * ctx->bm->width + tmp * mul; /* get new pixel , then add its partial coverage to this area */ tmp = *(part->buf); mul = ctx->bm->width - oxe; acc += tmp * mul; /* round, divide, and either store or accumulate to output row */ if (accum) { acc += out_line[ox]; } out_line[ox] = acc; /* reset accumulator */ acc = 0; mul = ctx->bm->width - mul; ox += 1; /* inside an area */ } else { /* add pixel value to accumulator */ acc += *(part->buf); } #endif part->buf++; part->len--; } return true; } /* vertical area average scaler */ static inline bool scale_v_area(struct rowset *rset, struct scaler_context *ctx) { uint32_t mul, x, oy, iy, oye; /* Set up rounding and scale factors */ ctx->divisor *= ctx->src->height; ctx->round = ctx->divisor >> 1; ctx->divisor = (((ctx->divisor >> 1) + SC_NUM) / ctx->divisor) << SC_FIX; mul = 0; oy = rset->rowstart; oye = 0; #ifdef HAVE_LCD_COLOR uint32_t *rowacc = (uint32_t *) ctx->buf, *rowtmp = rowacc + 3 * ctx->bm->width; memset((void *)ctx->buf, 0, ctx->bm->width * 2 * sizeof(struct uint32_rgb)); #else uint32_t *rowacc = (uint32_t *) ctx->buf, *rowtmp = rowacc + ctx->bm->width; memset((void *)ctx->buf, 0, ctx->bm->width * 2 * sizeof(uint32_t)); #endif SDEBUGF("scale_v_area\n"); /* zero the accumulator and temp rows */ for (iy = 0; iy < (unsigned int)ctx->src->height; iy++) { oye += ctx->bm->height; /* end of current area has been reached */ if (oye >= (unsigned int)ctx->src->height) { /* "reset" error, which now represents partial coverage of the next row by the next area */ oye -= ctx->src->height; /* add stored partial row to accumulator */ #ifdef HAVE_LCD_COLOR for (x = 0; x < 3 * (unsigned int)ctx->bm->width; x++) #else for (x = 0; x < (unsigned int)ctx->bm->width; x++) #endif rowacc[x] = rowacc[x] * ctx->bm->height + mul * rowtmp[x]; /* store new scaled row in temp row */ if(!ctx->h_scaler(rowtmp, ctx, false)) return false; /* add partial coverage by new row to this area, then round and scale to final value */ mul = ctx->bm->height - oye; #ifdef HAVE_LCD_COLOR for (x = 0; x < 3 * (unsigned int)ctx->bm->width; x++) #else for (x = 0; x < (unsigned int)ctx->bm->width; x++) #endif rowacc[x] += mul * rowtmp[x]; ctx->output_row(oy, (void*)rowacc, ctx); /* clear accumulator row, store partial coverage for next row */ #ifdef HAVE_LCD_COLOR memset((void *)rowacc, 0, ctx->bm->width * sizeof(uint32_t) * 3); #else memset((void *)rowacc, 0, ctx->bm->width * sizeof(uint32_t)); #endif mul = oye; oy += rset->rowstep; /* inside an area */ } else { /* accumulate new scaled row to rowacc */ if (!ctx->h_scaler(rowacc, ctx, true)) return false; } } return true; } #ifdef HAVE_UPSCALER /* Set up rounding and scale factors for the horizontal scaler. The divisor is bm->width - 1, so that the first and last pixels in the row align exactly between input and output */ static inline void scale_h_linear_setup(struct scaler_context *ctx) { ctx->divisor = ctx->bm->width - 1; } /* horizontal linear scaler */ static bool scale_h_linear(void *out_line_ptr, struct scaler_context *ctx, bool accum) { unsigned int ix, ox, ixe; /* type x = x is an ugly hack for hiding an unitialized data warning. The values are conditionally initialized before use, but other values are set such that this will occur before these are used. */ #ifdef HAVE_LCD_COLOR struct uint32_rgb rgbval=rgbval, rgbinc=rgbinc, *out_line = (struct uint32_rgb*)out_line_ptr; #else uint32_t val=val, inc=inc, *out_line = (uint32_t*)out_line_ptr; #endif struct img_part *part; SDEBUGF("scale_h_linear\n"); FILL_BUF_INIT(part,ctx->store_part,ctx->args); ix = 0; /* The error is set so that values are initialized on the first pass. */ ixe = ctx->bm->width - 1; /* give other tasks a chance to run */ yield(); for (ox = 0; ox < (uint32_t)ctx->bm->width; ox++) { #ifdef HAVE_LCD_COLOR if (ixe >= ((uint32_t)ctx->bm->width - 1)) { /* Store the new "current" pixel value in rgbval, and the color step value in rgbinc. */ ixe -= (ctx->bm->width - 1); rgbinc.r = -(part->buf->red); rgbinc.g = -(part->buf->green); rgbinc.b = -(part->buf->blue); rgbval.r = (part->buf->red) * (ctx->bm->width - 1); rgbval.g = (part->buf->green) * (ctx->bm->width - 1); rgbval.b = (part->buf->blue) * (ctx->bm->width - 1); ix += 1; /* If this wasn't the last pixel, add the next one to rgbinc. */ if (ix < (uint32_t)ctx->src->width) { part->buf++; part->len--; /* Fetch new pixels if needed */ FILL_BUF(part,ctx->store_part,ctx->args); rgbinc.r += part->buf->red; rgbinc.g += part->buf->green; rgbinc.b += part->buf->blue; /* Add a partial step to rgbval, in this pixel isn't precisely aligned with the new source pixel */ rgbval.r += rgbinc.r * ixe; rgbval.g += rgbinc.g * ixe; rgbval.b += rgbinc.b * ixe; } /* Now multiple the color increment to its proper value */ rgbinc.r *= ctx->src->width - 1; rgbinc.g *= ctx->src->width - 1; rgbinc.b *= ctx->src->width - 1; } else { rgbval.r += rgbinc.r; rgbval.g += rgbinc.g; rgbval.b += rgbinc.b; } /* round and scale values, and accumulate or store to output */ if (accum) { out_line[ox].r += rgbval.r; out_line[ox].g += rgbval.g; out_line[ox].b += rgbval.b; } else { out_line[ox].r = rgbval.r; out_line[ox].g = rgbval.g; out_line[ox].b = rgbval.b; } #else if (ixe >= ((uint32_t)ctx->bm->width - 1)) { /* Store the new "current" pixel value in rgbval, and the color step value in rgbinc. */ ixe -= (ctx->bm->width - 1); val = *(part->buf); inc = -val; val *= (ctx->bm->width - 1); ix += 1; /* If this wasn't the last pixel, add the next one to rgbinc. */ if (ix < (uint32_t)ctx->src->width) { part->buf++; part->len--; /* Fetch new pixels if needed */ FILL_BUF(part,ctx->store_part,ctx->args); inc += *(part->buf); /* Add a partial step to rgbval, in this pixel isn't precisely aligned with the new source pixel */ val += inc * ixe; } /* Now multiply the color increment to its proper value */ inc *= ctx->src->width - 1; } else val += inc; /* round and scale values, and accumulate or store to output */ if (accum) { out_line[ox] += val; } else { out_line[ox] = val; } #endif ixe += ctx->src->width - 1; } return true; } /* vertical linear scaler */ static inline bool scale_v_linear(struct rowset *rset, struct scaler_context *ctx) { uint32_t mul, x, iy, iye; int32_t oy; /* Set up scale and rounding factors, the divisor is bm->height - 1 */ ctx->divisor *= (ctx->bm->height - 1); ctx->round = ctx->divisor >> 1; ctx->divisor = (((ctx->divisor >> 1) + SC_NUM) / ctx->divisor) << SC_FIX; /* Set up our two temp buffers. The names are generic because they'll be swapped each time a new input row is read */ #ifdef HAVE_LCD_COLOR uint32_t *rowinc = (uint32_t *)(ctx->buf), *rowval = rowinc + 3 * ctx->bm->width, *rowtmp = rowval + 3 * ctx->bm->width; #else uint32_t *rowinc = (uint32_t *)(ctx->buf), *rowval = rowinc + ctx->bm->width, *rowtmp = rowval + ctx->bm->width; #endif SDEBUGF("scale_v_linear\n"); mul = 0; iy = 0; iye = ctx->bm->height - 1; /* get first scaled row in rowtmp */ if(!ctx->h_scaler((void*)rowtmp, ctx, false)) return false; for (oy = rset->rowstart; oy != rset->rowstop; oy += rset->rowstep) { if (iye >= (uint32_t)ctx->bm->height - 1) { iye -= ctx->bm->height - 1; iy += 1; #ifdef HAVE_LCD_COLOR for (x = 0; x < 3 * (uint32_t)ctx->bm->width; x++) #else for (x = 0; x < (uint32_t)ctx->bm->width; x++) #endif { rowinc[x] = -rowtmp[x]; rowval[x] = rowtmp[x] * (ctx->bm->height - 1); } if (iy < (uint32_t)ctx->src->height) { if (!ctx->h_scaler((void*)rowtmp, ctx, false)) return false; #ifdef HAVE_LCD_COLOR for (x = 0; x < 3 * (uint32_t)ctx->bm->width; x++) #else for (x = 0; x < (uint32_t)ctx->bm->width; x++) #endif { rowinc[x] += rowtmp[x]; rowval[x] += rowinc[x] * iye; rowinc[x] *= ctx->src->height - 1; } } } else #ifdef HAVE_LCD_COLOR for (x = 0; x < 3 * (uint32_t)ctx->bm->width; x++) #else for (x = 0; x < (uint32_t)ctx->bm->width; x++) #endif rowval[x] += rowinc[x]; ctx->output_row(oy, (void*)rowval, ctx); iye += ctx->src->height - 1; } return true; } #endif /* HAVE_UPSCALER */ #ifndef PLUGIN static void output_row_native(uint32_t row, void * row_in, struct scaler_context *ctx) { int col; int fb_width = BM_WIDTH(ctx->bm->width,FORMAT_NATIVE,0); uint8_t dy = DITHERY(row); #ifdef HAVE_LCD_COLOR struct uint32_rgb *qp = (struct uint32_rgb*)row_in; #else uint32_t *qp = (uint32_t*)row_in; #endif SDEBUGF("output_row: y: %lu in: %p\n",row, row_in); #if LCD_DEPTH == 2 #if LCD_PIXELFORMAT == HORIZONTAL_PACKING /* greyscale iPods */ fb_data *dest = (fb_data *)ctx->bm->data + fb_width * row; int shift = 6; int delta = 127; unsigned bright; unsigned data = 0; for (col = 0; col < ctx->bm->width; col++) { if (ctx->dither) delta = DITHERXDY(col,dy); bright = SC_MUL((*qp++) + ctx->round,ctx->divisor); bright = (3 * bright + (bright >> 6) + delta) >> 8; data |= (~bright & 3) << shift; shift -= 2; if (shift < 0) { *dest++ = data; data = 0; shift = 6; } } if (shift < 6) *dest++ = data; #elif LCD_PIXELFORMAT == VERTICAL_PACKING /* iriver H1x0 */ fb_data *dest = (fb_data *)ctx->bm->data + fb_width * (row >> 2); int shift = 2 * (row & 3); int delta = 127; unsigned bright; for (col = 0; col < ctx->bm->width; col++) { if (ctx->dither) delta = DITHERXDY(col,dy); bright = SC_MUL((*qp++) + ctx->round, ctx->divisor); bright = (3 * bright + (bright >> 6) + delta) >> 8; *dest++ |= (~bright & 3) << shift; } #elif LCD_PIXELFORMAT == VERTICAL_INTERLEAVED /* iAudio M3 */ fb_data *dest = (fb_data *)ctx->bm->data + fb_width * (row >> 3); int shift = row & 7; int delta = 127; unsigned bright; for (col = 0; col < ctx->bm->width; col++) { if (ctx->dither) delta = DITHERXDY(col,dy); bright = SC_MUL((*qp++) + ctx->round, ctx->divisor); bright = (3 * bright + (bright >> 6) + delta) >> 8; *dest++ |= vi_pattern[bright] << shift; } #endif /* LCD_PIXELFORMAT */ #elif LCD_DEPTH == 16 /* iriver h300, colour iPods, X5 */ fb_data *dest = (fb_data *)ctx->bm->data + fb_width * row; int delta = 127; unsigned r, g, b; struct uint32_rgb q0; for (col = 0; col < ctx->bm->width; col++) { if (ctx->dither) delta = DITHERXDY(col,dy); q0 = *qp++; r = SC_MUL(q0.r + ctx->round, ctx->divisor); g = SC_MUL(q0.g + ctx->round, ctx->divisor); b = SC_MUL(q0.b + ctx->round, ctx->divisor); r = (31 * r + (r >> 3) + delta) >> 8; g = (63 * g + (g >> 2) + delta) >> 8; b = (31 * b + (b >> 3) + delta) >> 8; *dest++ = LCD_RGBPACK_LCD(r, g, b); } #endif /* LCD_DEPTH */ } #endif int resize_on_load(struct bitmap *bm, bool dither, struct dim *src, struct rowset *rset, unsigned char *buf, unsigned int len, const struct custom_format *format, struct img_part* (*store_part)(void *args), void *args) { #ifdef HAVE_UPSCALER const int sw = src->width; const int sh = src->height; const int dw = bm->width; const int dh = bm->height; #endif int ret; #ifdef HAVE_LCD_COLOR unsigned int needed = sizeof(struct uint32_rgb) * 3 * bm->width; #else unsigned int needed = sizeof(uint32_t) * 3 * bm->width; #endif #if MAX_SC_STACK_ALLOC uint8_t sc_buf[(needed <= len || needed > MAX_SC_STACK_ALLOC) ? 0 : needed]; #endif ALIGN_BUFFER(buf, len, sizeof(uint32_t)); if (needed > len) { #if MAX_SC_STACK_ALLOC if (needed > MAX_SC_STACK_ALLOC) { DEBUGF("unable to allocate required buffer: %d needed, " "%d available, %d permitted from stack\n", needed, len, MAX_SC_STACK_ALLOC); return 0; } if (sizeof(sc_buf) < needed) { DEBUGF("failed to allocate large enough buffer on stack: " "%d needed, only got %d", needed, MAX_SC_STACK_ALLOC); return 0; } #else DEBUGF("unable to allocate required buffer: %d needed, " "%d available\n", needed, len); return 0; #endif } struct scaler_context ctx; #ifdef HAVE_ADJUSTABLE_CPU_FREQ cpu_boost(true); #endif ctx.store_part = store_part; ctx.args = args; #if MAX_SC_STACK_ALLOC ctx.buf = needed > len ? sc_buf : buf; #else ctx.buf = buf; #endif ctx.len = len; ctx.bm = bm; ctx.src = src; ctx.dither = dither; #ifndef PLUGIN ctx.output_row = output_row_native; if (format) #endif ctx.output_row = format->output_row; #ifdef HAVE_UPSCALER if (sw > dw) { #endif ctx.h_scaler = scale_h_area; scale_h_area_setup(&ctx); #ifdef HAVE_UPSCALER } else { ctx.h_scaler = scale_h_linear; scale_h_linear_setup(&ctx); } #endif SC_MUL_INIT; #ifdef HAVE_UPSCALER if (sh > dh) #endif ret = scale_v_area(rset, &ctx); #ifdef HAVE_UPSCALER else ret = scale_v_linear(rset, &ctx); #endif SC_MUL_END; #ifdef HAVE_ADJUSTABLE_CPU_FREQ cpu_boost(false); #endif if (!ret) return 0; return 1; }