/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * JPEG image viewer * (This is a real mess if it has to be coded in one single C file) * * Copyright (C) 2009 Andrew Mahone fractional decode, split IDCT - 16-point * IDCT based on IJG jpeg-7 pre-release * File scrolling addition (C) 2005 Alexander Spyridakis * Copyright (C) 2004 Jörg Hohensohn aka [IDC]Dragon * Heavily borrowed from the IJG implementation (C) Thomas G. Lane * Small & fast downscaling IDCT (C) 2002 by Guido Vollbeding JPEGclub.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "plugin.h" #include "debug.h" #include "jpeg_load.h" /*#define JPEG_BS_DEBUG*/ /* for portability of below JPEG code */ #define MEMSET(p,v,c) memset(p,v,c) #define MEMCPY(d,s,c) memcpy(d,s,c) #define INLINE static inline #define ENDIAN_SWAP16(n) n /* only for poor little endian machines */ #ifdef ROCKBOX_DEBUG_JPEG #define JDEBUGF DEBUGF #else #define JDEBUGF(...) #endif /**************** begin JPEG code ********************/ #ifdef HAVE_LCD_COLOR typedef struct uint8_rgb jpeg_pix_t; #else typedef uint8_t jpeg_pix_t; #endif #define JPEG_PIX_SZ (sizeof(jpeg_pix_t)) /* This can't be in jpeg_load.h because plugin.h includes it, and it conflicts * with the definition in jpeg_decoder.h */ struct jpeg { #ifdef JPEG_FROM_MEM unsigned char *data; unsigned long len; #else int fd; int buf_left; int buf_index; #endif unsigned long int bitbuf; int bitbuf_bits; int marker_ind; int marker_val; unsigned char marker; int x_size, y_size; /* size of image (can be less than block boundary) */ int x_phys, y_phys; /* physical size, block aligned */ int x_mbl; /* x dimension of MBL */ int y_mbl; /* y dimension of MBL */ int blocks; /* blocks per MB */ int restart_interval; /* number of MCUs between RSTm markers */ int restart; /* blocks until next restart marker */ int mcu_row; /* current row relative to first row of this row of MCUs */ unsigned char *out_ptr; /* pointer to current row to output */ int cur_row; /* current row relative to top of image */ int set_rows; int store_pos[4]; /* for Y block ordering */ #ifdef HAVE_LCD_COLOR int last_dc_val[3]; int h_scale[2]; /* horizontal scalefactor = (2**N) / 8 */ int v_scale[2]; /* same as above, for vertical direction */ int k_need[2]; /* per component zig-zag index of last needed coefficient */ int zero_need[2]; /* per compenent number of coefficients to zero */ #else int last_dc_val; int h_scale[1]; /* horizontal scalefactor = (2**N) / 8 */ int v_scale[1]; /* same as above, for vertical direction */ int k_need[1]; /* per component zig-zag index of last needed coefficient */ int zero_need[1]; /* per compenent number of coefficients to zero */ #endif jpeg_pix_t *img_buf; int quanttable[4][QUANT_TABLE_LENGTH]; /* raw quantization tables 0-3 */ struct huffman_table hufftable[2]; /* Huffman tables */ struct derived_tbl dc_derived_tbls[2]; /* Huffman-LUTs */ struct derived_tbl ac_derived_tbls[2]; struct frame_component frameheader[3]; /* Component descriptor */ struct scan_component scanheader[3]; /* currently not used */ int mcu_membership[6]; /* info per block */ int tab_membership[6]; int subsample_x[3]; /* info per component */ int subsample_y[3]; bool resize; unsigned char buf[JPEG_READ_BUF_SIZE]; struct img_part part; }; #ifdef JPEG_FROM_MEM static struct jpeg jpeg; #endif INLINE unsigned range_limit(int value) { #if CONFIG_CPU == SH7034 unsigned tmp; asm ( /* Note: Uses knowledge that only low byte of result is used */ "mov #-128,%[t] \n" "sub %[t],%[v] \n" /* value -= -128; equals value += 128; */ "extu.b %[v],%[t] \n" "cmp/eq %[v],%[t] \n" /* low byte == whole number ? */ "bt 1f \n" /* yes: no overflow */ "cmp/pz %[v] \n" /* overflow: positive? */ "subc %[v],%[v] \n" /* %[r] now either 0 or 0xffffffff */ "1: \n" : /* outputs */ [v]"+r"(value), [t]"=&r"(tmp) ); return value; #elif defined(CPU_COLDFIRE) /* Note: Uses knowledge that only the low byte of the result is used */ asm ( "add.l #128,%[v] \n" /* value += 128; */ "cmp.l #255,%[v] \n" /* overflow? */ "bls.b 1f \n" /* no: return value */ /* yes: set low byte to appropriate boundary */ "spl.b %[v] \n" "1: \n" : /* outputs */ [v]"+d"(value) ); return value; #elif defined(CPU_ARM) /* Note: Uses knowledge that only the low byte of the result is used */ asm ( "add %[v], %[v], #128 \n" /* value += 128 */ "cmp %[v], #255 \n" /* out of range 0..255? */ "mvnhi %[v], %[v], asr #31 \n" /* yes: set all bits to ~(sign_bit) */ : /* outputs */ [v]"+r"(value) ); return value; #else value += 128; if ((unsigned)value <= 255) return value; if (value < 0) return 0; return 255; #endif } /* IDCT implementation */ #define CONST_BITS 13 #define PASS1_BITS 2 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #define FIX_0_298631336 2446 /* FIX(0.298631336) */ #define FIX_0_390180644 3196 /* FIX(0.390180644) */ #define FIX_0_541196100 4433 /* FIX(0.541196100) */ #define FIX_0_765366865 6270 /* FIX(0.765366865) */ #define FIX_0_899976223 7373 /* FIX(0.899976223) */ #define FIX_1_175875602 9633 /* FIX(1.175875602) */ #define FIX_1_501321110 12299 /* FIX(1.501321110) */ #define FIX_1_847759065 15137 /* FIX(1.847759065) */ #define FIX_1_961570560 16069 /* FIX(1.961570560) */ #define FIX_2_053119869 16819 /* FIX(2.053119869) */ #define FIX_2_562915447 20995 /* FIX(2.562915447) */ #define FIX_3_072711026 25172 /* FIX(3.072711026) */ /* Multiply an long variable by an long constant to yield an long result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #define MULTIPLY16(var,const) (((short) (var)) * ((short) (const))) #define MULTIPLY(var1, var2) ((var1) * (var2)) /* * Macros for handling fixed-point arithmetic; these are used by many * but not all of the DCT/IDCT modules. * * All values are expected to be of type INT32. * Fractional constants are scaled left by CONST_BITS bits. * CONST_BITS is defined within each module using these macros, * and may differ from one module to the next. */ #define ONE ((long)1) #define CONST_SCALE (ONE << CONST_BITS) /* Convert a positive real constant to an integer scaled by CONST_SCALE. * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, * thus causing a lot of useless floating-point operations at run time. */ #define FIX(x) ((long) ((x) * CONST_SCALE + 0.5)) #define RIGHT_SHIFT(x,shft) ((x) >> (shft)) /* Descale and correctly round an int value that's scaled by N bits. * We assume RIGHT_SHIFT rounds towards minus infinity, so adding * the fudge factor is correct for either sign of X. */ #define DESCALE(x,n) (((x) + (1l << ((n)-1))) >> (n)) #define DS_OUT ((CONST_BITS)+(PASS1_BITS)+3) /* * Conversion of full 0-255 range YCrCb to RGB: * |R| |1.000000 -0.000001 1.402000| |Y'| * |G| = |1.000000 -0.334136 -0.714136| |Pb| * |B| |1.000000 1.772000 0.000000| |Pr| * Scaled (yields s15-bit output): * |R| |128 0 179| |Y | * |G| = |128 -43 -91| |Cb - 128| * |B| |128 227 0| |Cr - 128| */ #define YFAC 128 #define RVFAC 179 #define GUFAC (-43) #define GVFAC (-91) #define BUFAC 227 #define COMPONENT_SHIFT 15 /* horizontal-pass 1-point IDCT */ static void idct1h(int *ws, unsigned char *out, int rows, int rowstep) { int row; for (row = 0; row < rows; row++) { *out = range_limit((int) DESCALE(*ws, DS_OUT)); out += rowstep; ws += 8; } } /* vertical-pass 2-point IDCT */ static void idct2v(int *ws, int cols) { int col; for (col = 0; col < cols; col++) { int tmp1 = ws[0]; int tmp2 = ws[8]; ws[0] = tmp1 + tmp2; ws[8] = tmp1 - tmp2; ws++; } } /* horizontal-pass 2-point IDCT */ static void idct2h(int *ws, unsigned char *out, int rows, int rowstep) { int row; for (row = 0; row < rows; row++) { int tmp1 = ws[0] + (ONE << (DS_OUT - 1)); int tmp2 = ws[1]; out[JPEG_PIX_SZ*0] = range_limit((int) RIGHT_SHIFT(tmp1 + tmp2, DS_OUT)); out[JPEG_PIX_SZ*1] = range_limit((int) RIGHT_SHIFT(tmp1 - tmp2, DS_OUT)); out += rowstep; ws += 8; } } /* vertical-pass 4-point IDCT */ static void idct4v(int *ws, int cols) { int tmp0, tmp2, tmp10, tmp12; int z1, z2, z3; int col; for (col = 0; col < cols; col++, ws++) { /* Even part */ tmp0 = ws[8*0]; tmp2 = ws[8*2]; tmp10 = (tmp0 + tmp2) << PASS1_BITS; tmp12 = (tmp0 - tmp2) << PASS1_BITS; /* Odd part */ /* Same rotation as in the even part of the 8x8 LL&M IDCT */ z2 = ws[8*1]; z3 = ws[8*3]; z1 = MULTIPLY16(z2 + z3, FIX_0_541196100) + (ONE << (CONST_BITS - PASS1_BITS - 1)); tmp0 = RIGHT_SHIFT(z1 + MULTIPLY16(z3, - FIX_1_847759065), CONST_BITS-PASS1_BITS); tmp2 = RIGHT_SHIFT(z1 + MULTIPLY16(z2, FIX_0_765366865), CONST_BITS-PASS1_BITS); /* Final output stage */ ws[8*0] = (int) (tmp10 + tmp2); ws[8*3] = (int) (tmp10 - tmp2); ws[8*1] = (int) (tmp12 + tmp0); ws[8*2] = (int) (tmp12 - tmp0); } } /* horizontal-pass 4-point IDCT */ static void idct4h(int *ws, unsigned char *out, int rows, int rowstep) { int tmp0, tmp2, tmp10, tmp12; int z1, z2, z3; int row; for (row = 0; row < rows; row++, out += rowstep, ws += 8) { /* Even part */ tmp0 = (int) ws[0] + (ONE << (PASS1_BITS + 2)); tmp2 = (int) ws[2]; tmp10 = (tmp0 + tmp2) << CONST_BITS; tmp12 = (tmp0 - tmp2) << CONST_BITS; /* Odd part */ /* Same rotation as in the even part of the 8x8 LL&M IDCT */ z2 = (int) ws[1]; z3 = (int) ws[3]; z1 = MULTIPLY16(z2 + z3, FIX_0_541196100); tmp0 = z1 + MULTIPLY16(z3, - FIX_1_847759065); tmp2 = z1 + MULTIPLY16(z2, FIX_0_765366865); /* Final output stage */ out[JPEG_PIX_SZ*0] = range_limit((int) RIGHT_SHIFT(tmp10 + tmp2, DS_OUT)); out[JPEG_PIX_SZ*3] = range_limit((int) RIGHT_SHIFT(tmp10 - tmp2, DS_OUT)); out[JPEG_PIX_SZ*1] = range_limit((int) RIGHT_SHIFT(tmp12 + tmp0, DS_OUT)); out[JPEG_PIX_SZ*2] = range_limit((int) RIGHT_SHIFT(tmp12 - tmp0, DS_OUT)); } } /* vertical-pass 8-point IDCT */ static void idct8v(int *ws, int cols) { long tmp0, tmp1, tmp2, tmp3; long tmp10, tmp11, tmp12, tmp13; long z1, z2, z3, z4, z5; int col; for (col = 0; col < cols; col++, ws++) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if ((ws[8*1] | ws[8*2] | ws[8*3] | ws[8*4] | ws[8*5] | ws[8*6] | ws[8*7]) == 0) { /* AC terms all zero */ int dcval = ws[8*0] << PASS1_BITS; ws[8*0] = ws[8*1] = ws[8*2] = ws[8*3] = ws[8*4] = ws[8*5] = ws[8*6] = ws[8*7] = dcval; continue; } /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ z2 = ws[8*2]; z3 = ws[8*6]; z1 = MULTIPLY16(z2 + z3, FIX_0_541196100); tmp2 = z1 + MULTIPLY16(z3, - FIX_1_847759065); tmp3 = z1 + MULTIPLY16(z2, FIX_0_765366865); z2 = ws[8*0] << CONST_BITS; z2 += ONE << (CONST_BITS - PASS1_BITS - 1); z3 = ws[8*4] << CONST_BITS; tmp0 = (z2 + z3); tmp1 = (z2 - z3); tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; /* Odd part per figure 8; the matrix is unitary and hence its transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ tmp0 = ws[8*7]; tmp1 = ws[8*5]; tmp2 = ws[8*3]; tmp3 = ws[8*1]; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; z3 = tmp0 + tmp2; z4 = tmp1 + tmp3; z5 = MULTIPLY16(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp0 = MULTIPLY16(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp1 = MULTIPLY16(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp2 = MULTIPLY16(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp3 = MULTIPLY16(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY16(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY16(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY16(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY16(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ ws[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS); ws[8*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS); ws[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS); ws[8*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS); ws[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS); ws[8*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS); ws[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS); ws[8*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS); } } /* horizontal-pass 8-point IDCT */ static void idct8h(int *ws, unsigned char *out, int rows, int rowstep) { long tmp0, tmp1, tmp2, tmp3; long tmp10, tmp11, tmp12, tmp13; long z1, z2, z3, z4, z5; int row; for (row = 0; row < rows; row++, out += rowstep, ws += 8) { /* Rows of zeroes can be exploited in the same way as we did with * columns. However, the column calculation has created many nonzero AC * terms, so the simplification applies less often (typically 5% to 10% * of the time). On machines with very fast multiplication, it's * possible that the test takes more time than it's worth. In that * case this section may be commented out. */ #ifndef NO_ZERO_ROW_TEST if ((ws[1] | ws[2] | ws[3] | ws[4] | ws[5] | ws[6] | ws[7]) == 0) { /* AC terms all zero */ unsigned char dcval = range_limit((int) DESCALE((long) ws[0], PASS1_BITS+3)); out[JPEG_PIX_SZ*0] = dcval; out[JPEG_PIX_SZ*1] = dcval; out[JPEG_PIX_SZ*2] = dcval; out[JPEG_PIX_SZ*3] = dcval; out[JPEG_PIX_SZ*4] = dcval; out[JPEG_PIX_SZ*5] = dcval; out[JPEG_PIX_SZ*6] = dcval; out[JPEG_PIX_SZ*7] = dcval; continue; } #endif /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ z2 = (long) ws[2]; z3 = (long) ws[6]; z1 = MULTIPLY16(z2 + z3, FIX_0_541196100); tmp2 = z1 + MULTIPLY16(z3, - FIX_1_847759065); tmp3 = z1 + MULTIPLY16(z2, FIX_0_765366865); z4 = (long) ws[0] + (ONE << (PASS1_BITS + 2)); z4 <<= CONST_BITS; z5 = (long) ws[4] << CONST_BITS; tmp0 = z4 + z5; tmp1 = z4 - z5; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ tmp0 = (long) ws[7]; tmp1 = (long) ws[5]; tmp2 = (long) ws[3]; tmp3 = (long) ws[1]; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; z3 = tmp0 + tmp2; z4 = tmp1 + tmp3; z5 = MULTIPLY16(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp0 = MULTIPLY16(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp1 = MULTIPLY16(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp2 = MULTIPLY16(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp3 = MULTIPLY16(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY16(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY16(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY16(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY16(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ out[JPEG_PIX_SZ*0] = range_limit((int) RIGHT_SHIFT(tmp10 + tmp3, DS_OUT)); out[JPEG_PIX_SZ*7] = range_limit((int) RIGHT_SHIFT(tmp10 - tmp3, DS_OUT)); out[JPEG_PIX_SZ*1] = range_limit((int) RIGHT_SHIFT(tmp11 + tmp2, DS_OUT)); out[JPEG_PIX_SZ*6] = range_limit((int) RIGHT_SHIFT(tmp11 - tmp2, DS_OUT)); out[JPEG_PIX_SZ*2] = range_limit((int) RIGHT_SHIFT(tmp12 + tmp1, DS_OUT)); out[JPEG_PIX_SZ*5] = range_limit((int) RIGHT_SHIFT(tmp12 - tmp1, DS_OUT)); out[JPEG_PIX_SZ*3] = range_limit((int) RIGHT_SHIFT(tmp13 + tmp0, DS_OUT)); out[JPEG_PIX_SZ*4] = range_limit((int) RIGHT_SHIFT(tmp13 - tmp0, DS_OUT)); } } #ifdef HAVE_LCD_COLOR /* vertical-pass 16-point IDCT */ static void idct16v(int *ws, int cols) { long tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13; long tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; long z1, z2, z3, z4; int col; for (col = 0; col < cols; col++, ws++) { /* Even part */ tmp0 = ws[8*0] << CONST_BITS; /* Add fudge factor here for final descale. */ tmp0 += 1 << (CONST_BITS-PASS1_BITS-1); z1 = ws[8*4]; tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ tmp10 = tmp0 + tmp1; tmp11 = tmp0 - tmp1; tmp12 = tmp0 + tmp2; tmp13 = tmp0 - tmp2; z1 = ws[8*2]; z2 = ws[8*6]; z3 = z1 - z2; z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ /* (c6+c2)[16] = (c3+c1)[8] */ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6-c14)[16] = (c3-c7)[8] */ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c2-c10)[16] = (c1-c5)[8] */ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c10-c14)[16] = (c5-c7)[8] */ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); tmp20 = tmp10 + tmp0; tmp27 = tmp10 - tmp0; tmp21 = tmp12 + tmp1; tmp26 = tmp12 - tmp1; tmp22 = tmp13 + tmp2; tmp25 = tmp13 - tmp2; tmp23 = tmp11 + tmp3; tmp24 = tmp11 - tmp3; /* Odd part */ z1 = ws[8*1]; z2 = ws[8*3]; z3 = ws[8*5]; z4 = ws[8*7]; tmp11 = z1 + z3; tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ tmp13 = tmp10 + tmp11 + tmp12 - MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ z2 += z4; z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ tmp1 += z1; tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ tmp12 += z2; z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ tmp2 += z2; tmp3 += z2; z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ tmp10 += z2; tmp11 += z2; /* Final output stage */ ws[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS); ws[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS); ws[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS); ws[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS); ws[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS); ws[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS); ws[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS); ws[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS); ws[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS); ws[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS); ws[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS); ws[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS); ws[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS); ws[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS); ws[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS); ws[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS); } } /* horizontal-pass 16-point IDCT */ static void idct16h(int *ws, unsigned char *out, int rows, int rowstep) { long tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13; long tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; long z1, z2, z3, z4; int row; for (row = 0; row < rows; row++, out += rowstep, ws += 8) { /* Even part */ /* Add fudge factor here for final descale. */ tmp0 = (long) ws[0] + (ONE << (PASS1_BITS+2)); tmp0 <<= CONST_BITS; z1 = (long) ws[4]; tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ tmp10 = tmp0 + tmp1; tmp11 = tmp0 - tmp1; tmp12 = tmp0 + tmp2; tmp13 = tmp0 - tmp2; z1 = (long) ws[2]; z2 = (long) ws[6]; z3 = z1 - z2; z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ /* (c6+c2)[16] = (c3+c1)[8] */ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6-c14)[16] = (c3-c7)[8] */ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c2-c10)[16] = (c1-c5)[8] */ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c10-c14)[16] = (c5-c7)[8] */ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); tmp20 = tmp10 + tmp0; tmp27 = tmp10 - tmp0; tmp21 = tmp12 + tmp1; tmp26 = tmp12 - tmp1; tmp22 = tmp13 + tmp2; tmp25 = tmp13 - tmp2; tmp23 = tmp11 + tmp3; tmp24 = tmp11 - tmp3; /* Odd part */ z1 = (long) ws[1]; z2 = (long) ws[3]; z3 = (long) ws[5]; z4 = (long) ws[7]; tmp11 = z1 + z3; tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ tmp13 = tmp10 + tmp11 + tmp12 - MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ z2 += z4; z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ tmp1 += z1; tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ tmp12 += z2; z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ tmp2 += z2; tmp3 += z2; z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ tmp10 += z2; tmp11 += z2; /* Final output stage */ out[JPEG_PIX_SZ*0] = range_limit((int) RIGHT_SHIFT(tmp20 + tmp0, DS_OUT)); out[JPEG_PIX_SZ*15] = range_limit((int) RIGHT_SHIFT(tmp20 - tmp0, DS_OUT)); out[JPEG_PIX_SZ*1] = range_limit((int) RIGHT_SHIFT(tmp21 + tmp1, DS_OUT)); out[JPEG_PIX_SZ*14] = range_limit((int) RIGHT_SHIFT(tmp21 - tmp1, DS_OUT)); out[JPEG_PIX_SZ*2] = range_limit((int) RIGHT_SHIFT(tmp22 + tmp2, DS_OUT)); out[JPEG_PIX_SZ*13] = range_limit((int) RIGHT_SHIFT(tmp22 - tmp2, DS_OUT)); out[JPEG_PIX_SZ*3] = range_limit((int) RIGHT_SHIFT(tmp23 + tmp3, DS_OUT)); out[JPEG_PIX_SZ*12] = range_limit((int) RIGHT_SHIFT(tmp23 - tmp3, DS_OUT)); out[JPEG_PIX_SZ*4] = range_limit((int) RIGHT_SHIFT(tmp24 + tmp10, DS_OUT)); out[JPEG_PIX_SZ*11] = range_limit((int) RIGHT_SHIFT(tmp24 - tmp10, DS_OUT)); out[JPEG_PIX_SZ*5] = range_limit((int) RIGHT_SHIFT(tmp25 + tmp11, DS_OUT)); out[JPEG_PIX_SZ*10] = range_limit((int) RIGHT_SHIFT(tmp25 - tmp11, DS_OUT)); out[JPEG_PIX_SZ*6] = range_limit((int) RIGHT_SHIFT(tmp26 + tmp12, DS_OUT)); out[JPEG_PIX_SZ*9] = range_limit((int) RIGHT_SHIFT(tmp26 - tmp12, DS_OUT)); out[JPEG_PIX_SZ*7] = range_limit((int) RIGHT_SHIFT(tmp27 + tmp13, DS_OUT)); out[JPEG_PIX_SZ*8] = range_limit((int) RIGHT_SHIFT(tmp27 - tmp13, DS_OUT)); } } #endif struct idct_entry { int v_scale; int h_scale; void (*v_idct)(int *ws, int cols); void (*h_idct)(int *ws, unsigned char *out, int rows, int rowstep); }; struct idct_entry idct_tbl[] = { { PASS1_BITS, CONST_BITS, NULL, idct1h }, { PASS1_BITS, CONST_BITS, idct2v, idct2h }, { 0, 0, idct4v, idct4h }, { 0, 0, idct8v, idct8h }, #ifdef HAVE_LCD_COLOR { 0, 0, idct16v, idct16h }, #endif }; /* JPEG decoder implementation */ #ifdef JPEG_FROM_MEM INLINE unsigned char *getc(struct jpeg* p_jpeg) { if (LIKELY(p_jpeg->len)) { p_jpeg->len--; return p_jpeg->data++; } else return NULL; } INLINE bool skip_bytes(struct jpeg* p_jpeg, int count) { if (p_jpeg->len >= (unsigned)count) { p_jpeg->len -= count; p_jpeg->data += count; return true; } else { p_jpeg->data += p_jpeg->len; p_jpeg->len = 0; return false; } } INLINE void putc(struct jpeg* p_jpeg) { p_jpeg->len++; p_jpeg->data--; } #else INLINE void fill_buf(struct jpeg* p_jpeg) { p_jpeg->buf_left = read(p_jpeg->fd, p_jpeg->buf, JPEG_READ_BUF_SIZE); p_jpeg->buf_index = 0; } static unsigned char *getc(struct jpeg* p_jpeg) { if (UNLIKELY(p_jpeg->buf_left < 1)) fill_buf(p_jpeg); if (UNLIKELY(p_jpeg->buf_left < 1)) return NULL; p_jpeg->buf_left--; return (p_jpeg->buf_index++) + p_jpeg->buf; } INLINE bool skip_bytes_seek(struct jpeg* p_jpeg) { if (UNLIKELY(lseek(p_jpeg->fd, -p_jpeg->buf_left, SEEK_CUR) < 0)) return false; p_jpeg->buf_left = 0; return true; } static bool skip_bytes(struct jpeg* p_jpeg, int count) { p_jpeg->buf_left -= count; p_jpeg->buf_index += count; return p_jpeg->buf_left >= 0 || skip_bytes_seek(p_jpeg); } static void putc(struct jpeg* p_jpeg) { p_jpeg->buf_left++; p_jpeg->buf_index--; } #endif #define e_skip_bytes(jpeg, count) \ do {\ if (UNLIKELY(!skip_bytes((jpeg),(count)))) \ return -1; \ } while (0) #define e_getc(jpeg, code) \ ({ \ unsigned char *c; \ if (UNLIKELY(!(c = getc(jpeg)))) \ return (code); \ *c; \ }) #define d_getc(jpeg, def) \ ({ \ unsigned char *cp = getc(jpeg); \ unsigned char c = LIKELY(cp) ? *cp : (def); \ c; \ }) /* Preprocess the JPEG JFIF file */ static int process_markers(struct jpeg* p_jpeg) { unsigned char c; int marker_size; /* variable length of marker segment */ int i, j, n; int ret = 0; /* returned flags */ while ((c = e_getc(p_jpeg, -1))) { if (c != 0xFF) /* no marker? */ { JDEBUGF("Non-marker data\n"); putc(p_jpeg); break; /* exit marker processing */ } c = e_getc(p_jpeg, -1); JDEBUGF("marker value %X\n",c); switch (c) { case 0xFF: /* Fill byte */ ret |= FILL_FF; case 0x00: /* Zero stuffed byte - entropy data */ putc(p_jpeg); continue; case 0xC0: /* SOF Huff - Baseline DCT */ { JDEBUGF("SOF marker "); ret |= SOF0; marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */ marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */ JDEBUGF("len: %d\n", marker_size); n = e_getc(p_jpeg, -1); /* sample precision (= 8 or 12) */ if (n != 8) { return(-1); /* Unsupported sample precision */ } p_jpeg->y_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */ p_jpeg->y_size |= e_getc(p_jpeg, -1); /* Lowbyte */ p_jpeg->x_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */ p_jpeg->x_size |= e_getc(p_jpeg, -1); /* Lowbyte */ JDEBUGF(" dimensions: %dx%d\n", p_jpeg->x_size, p_jpeg->y_size); n = (marker_size-2-6)/3; if (e_getc(p_jpeg, -1) != n || (n != 1 && n != 3)) { return(-2); /* Unsupported SOF0 component specification */ } for (i=0; iframeheader[i].ID = e_getc(p_jpeg, -1); p_jpeg->frameheader[i].horizontal_sampling = (c = e_getc(p_jpeg, -1)) >> 4; p_jpeg->frameheader[i].vertical_sampling = c & 0x0F; p_jpeg->frameheader[i].quanttable_select = e_getc(p_jpeg, -1); if (p_jpeg->frameheader[i].horizontal_sampling > 2 || p_jpeg->frameheader[i].vertical_sampling > 2) return -3; /* Unsupported SOF0 subsampling */ } p_jpeg->blocks = n; } break; case 0xC1: /* SOF Huff - Extended sequential DCT*/ case 0xC2: /* SOF Huff - Progressive DCT*/ case 0xC3: /* SOF Huff - Spatial (sequential) lossless*/ case 0xC5: /* SOF Huff - Differential sequential DCT*/ case 0xC6: /* SOF Huff - Differential progressive DCT*/ case 0xC7: /* SOF Huff - Differential spatial*/ case 0xC8: /* SOF Arith - Reserved for JPEG extensions*/ case 0xC9: /* SOF Arith - Extended sequential DCT*/ case 0xCA: /* SOF Arith - Progressive DCT*/ case 0xCB: /* SOF Arith - Spatial (sequential) lossless*/ case 0xCD: /* SOF Arith - Differential sequential DCT*/ case 0xCE: /* SOF Arith - Differential progressive DCT*/ case 0xCF: /* SOF Arith - Differential spatial*/ { return (-4); /* other DCT model than baseline not implemented */ } case 0xC4: /* Define Huffman Table(s) */ { ret |= DHT; marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */ marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */ marker_size -= 2; while (marker_size > 17) /* another table */ { c = e_getc(p_jpeg, -1); marker_size--; int sum = 0; i = c & 0x0F; /* table index */ if (i > 1) { return (-5); /* Huffman table index out of range */ } else { if (c & 0xF0) /* AC table */ { for (j=0; j<16; j++) { p_jpeg->hufftable[i].huffmancodes_ac[j] = (c = e_getc(p_jpeg, -1)); sum += c; marker_size -= 1; } if(16 + sum > AC_LEN) return -10; /* longer than allowed */ for (; j < 16 + sum; j++) { p_jpeg->hufftable[i].huffmancodes_ac[j] = e_getc(p_jpeg, -1); marker_size--; } } else /* DC table */ { for (j=0; j<16; j++) { p_jpeg->hufftable[i].huffmancodes_dc[j] = (c = e_getc(p_jpeg, -1)); sum += c; marker_size--; } if(16 + sum > DC_LEN) return -11; /* longer than allowed */ for (; j < 16 + sum; j++) { p_jpeg->hufftable[i].huffmancodes_dc[j] = e_getc(p_jpeg, -1); marker_size--; } } } } /* while */ e_skip_bytes(p_jpeg, marker_size); } break; case 0xCC: /* Define Arithmetic coding conditioning(s) */ return(-6); /* Arithmetic coding not supported */ case 0xD8: /* Start of Image */ JDEBUGF("SOI\n"); break; case 0xD9: /* End of Image */ JDEBUGF("EOI\n"); break; case 0x01: /* for temp private use arith code */ JDEBUGF("private\n"); break; /* skip parameterless marker */ case 0xDA: /* Start of Scan */ { ret |= SOS; marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */ marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */ marker_size -= 2; n = (marker_size-1-3)/2; if (e_getc(p_jpeg, -1) != n || (n != 1 && n != 3)) { return (-7); /* Unsupported SOS component specification */ } marker_size--; for (i=0; iscanheader[i].ID = e_getc(p_jpeg, -1); p_jpeg->scanheader[i].DC_select = (c = e_getc(p_jpeg, -1)) >> 4; p_jpeg->scanheader[i].AC_select = c & 0x0F; marker_size -= 2; } /* skip spectral information */ e_skip_bytes(p_jpeg, marker_size); } break; case 0xDB: /* Define quantization Table(s) */ { ret |= DQT; marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */ marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */ marker_size -= 2; n = (marker_size)/(QUANT_TABLE_LENGTH+1); /* # of tables */ for (i=0; i= 4) { return (-8); /* Unsupported quantization table */ } /* Read Quantisation table: */ for (j=0; jquanttable[id][j] = e_getc(p_jpeg, -1); marker_size--; } } e_skip_bytes(p_jpeg, marker_size); } break; case 0xDD: /* Define Restart Interval */ { marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */ marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */ marker_size -= 4; /* Highbyte */ p_jpeg->restart_interval = e_getc(p_jpeg, -1) << 8; p_jpeg->restart_interval |= e_getc(p_jpeg, -1); /* Lowbyte */ e_skip_bytes(p_jpeg, marker_size); /* skip segment */ } break; case 0xDC: /* Define Number of Lines */ case 0xDE: /* Define Hierarchical progression */ case 0xDF: /* Expand Reference Component(s) */ case 0xE0: /* Application Field 0*/ case 0xE1: /* Application Field 1*/ case 0xE2: /* Application Field 2*/ case 0xE3: /* Application Field 3*/ case 0xE4: /* Application Field 4*/ case 0xE5: /* Application Field 5*/ case 0xE6: /* Application Field 6*/ case 0xE7: /* Application Field 7*/ case 0xE8: /* Application Field 8*/ case 0xE9: /* Application Field 9*/ case 0xEA: /* Application Field 10*/ case 0xEB: /* Application Field 11*/ case 0xEC: /* Application Field 12*/ case 0xED: /* Application Field 13*/ case 0xEE: /* Application Field 14*/ case 0xEF: /* Application Field 15*/ case 0xFE: /* Comment */ { marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */ marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */ marker_size -= 2; JDEBUGF("unhandled marker len %d\n", marker_size); e_skip_bytes(p_jpeg, marker_size); /* skip segment */ } break; case 0xF0: /* Reserved for JPEG extensions */ case 0xF1: /* Reserved for JPEG extensions */ case 0xF2: /* Reserved for JPEG extensions */ case 0xF3: /* Reserved for JPEG extensions */ case 0xF4: /* Reserved for JPEG extensions */ case 0xF5: /* Reserved for JPEG extensions */ case 0xF6: /* Reserved for JPEG extensions */ case 0xF7: /* Reserved for JPEG extensions */ case 0xF8: /* Reserved for JPEG extensions */ case 0xF9: /* Reserved for JPEG extensions */ case 0xFA: /* Reserved for JPEG extensions */ case 0xFB: /* Reserved for JPEG extensions */ case 0xFC: /* Reserved for JPEG extensions */ case 0xFD: /* Reserved for JPEG extensions */ case 0x02: /* Reserved */ default: return (-9); /* Unknown marker */ } /* switch */ } /* while */ return (ret); /* return flags with seen markers */ } static const struct huffman_table luma_table = { { 0x00,0x01,0x05,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B }, { 0x00,0x02,0x01,0x03,0x03,0x02,0x04,0x03,0x05,0x05,0x04,0x04,0x00,0x00, 0x01,0x7D,0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06, 0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xA1,0x08,0x23,0x42, 0xB1,0xC1,0x15,0x52,0xD1,0xF0,0x24,0x33,0x62,0x72,0x82,0x09,0x0A,0x16, 0x17,0x18,0x19,0x1A,0x25,0x26,0x27,0x28,0x29,0x2A,0x34,0x35,0x36,0x37, 0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x53,0x54,0x55, 0x56,0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x73, 0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x83,0x84,0x85,0x86,0x87,0x88,0x89, 0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0xA2,0xA3,0xA4,0xA5, 0xA6,0xA7,0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA, 0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4,0xD5,0xD6, 0xD7,0xD8,0xD9,0xDA,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA, 0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA } }; static const struct huffman_table chroma_table = { { 0x00,0x03,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00, 0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B }, { 0x00,0x02,0x01,0x02,0x04,0x04,0x03,0x04,0x07,0x05,0x04,0x04,0x00,0x01, 0x02,0x77,0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41, 0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xA1,0xB1, 0xC1,0x09,0x23,0x33,0x52,0xF0,0x15,0x62,0x72,0xD1,0x0A,0x16,0x24,0x34, 0xE1,0x25,0xF1,0x17,0x18,0x19,0x1A,0x26,0x27,0x28,0x29,0x2A,0x35,0x36, 0x37,0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x53,0x54, 0x55,0x56,0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A, 0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x82,0x83,0x84,0x85,0x86,0x87, 0x88,0x89,0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0xA2,0xA3, 0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8, 0xB9,0xBA,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4, 0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9, 0xEA,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA } }; static void default_huff_tbl(struct jpeg* p_jpeg) { MEMCPY(&p_jpeg->hufftable[0], &luma_table, sizeof(luma_table)); MEMCPY(&p_jpeg->hufftable[1], &chroma_table, sizeof(chroma_table)); return; } /* Compute the derived values for a Huffman table */ static void fix_huff_tbl(int* htbl, struct derived_tbl* dtbl) { int p, i, l, si; int lookbits, ctr; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; dtbl->pub = htbl; /* fill in back link */ /* Figure C.1: make table of Huffman code length for each symbol */ /* Note that this is in code-length order. */ p = 0; for (l = 1; l <= 16; l++) { /* all possible code length */ for (i = 1; i <= (int) htbl[l-1]; i++) /* all codes per length */ huffsize[p++] = (char) l; } huffsize[p] = 0; /* Figure C.2: generate the codes themselves */ /* Note that this is in code-length order. */ code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int) huffsize[p]) == si) { huffcode[p++] = code; code++; } code <<= 1; si++; } /* Figure F.15: generate decoding tables for bit-sequential decoding */ p = 0; for (l = 1; l <= 16; l++) { if (htbl[l-1]) { /* huffval[] index of 1st symbol of code length l */ dtbl->valptr[l] = p; dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */ p += htbl[l-1]; dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ } else { dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ } } dtbl->maxcode[17] = 0xFFFFFL; /* ensures huff_DECODE terminates */ /* Compute lookahead tables to speed up decoding. * First we set all the table entries to 0, indicating "too long"; * then we iterate through the Huffman codes that are short enough and * fill in all the entries that correspond to bit sequences starting * with that code. */ MEMSET(dtbl->look_nbits, 0, sizeof(dtbl->look_nbits)); p = 0; for (l = 1; l <= HUFF_LOOKAHEAD; l++) { for (i = 1; i <= (int) htbl[l-1]; i++, p++) { /* l = current code's length, p = its index in huffcode[] & * huffval[]. Generate left-justified code followed by all possible * bit sequences */ lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { dtbl->look_nbits[lookbits] = l; dtbl->look_sym[lookbits] = htbl[16+p]; lookbits++; } } } } /* zag[i] is the natural-order position of the i'th element of zigzag order. * If the incoming data is corrupted, decode_mcu could attempt to * reference values beyond the end of the array. To avoid a wild store, * we put some extra zeroes after the real entries. */ static const unsigned char zag[] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, 0, 0, 0, 0, 0, 0, 0, 0, /* extra entries in case k>63 below */ 0, 0, 0, 0, 0, 0, 0, 0 }; /* zig[i] is the the zig-zag order position of the i'th element of natural * order, reading left-to-right then top-to-bottom. */ static const unsigned char zig[] = { 0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13, 16, 26, 29, 42, 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, 10, 19, 23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, 21, 34, 37, 47, 50, 56, 59, 61, 35, 36, 48, 49, 57, 58, 62, 63 }; /* Reformat some image header data so that the decoder can use it properly. */ INLINE void fix_headers(struct jpeg* p_jpeg) { int i; for (i=0; i<4; i++) p_jpeg->store_pos[i] = i; /* default ordering */ /* assignments for the decoding of blocks */ if (p_jpeg->frameheader[0].horizontal_sampling == 2 && p_jpeg->frameheader[0].vertical_sampling == 1) { /* 4:2:2 */ p_jpeg->blocks = 4; p_jpeg->x_mbl = (p_jpeg->x_size+15) / 16; p_jpeg->x_phys = p_jpeg->x_mbl * 16; p_jpeg->y_mbl = (p_jpeg->y_size+7) / 8; p_jpeg->y_phys = p_jpeg->y_mbl * 8; p_jpeg->mcu_membership[0] = 0; /* Y1=Y2=0, U=1, V=2 */ p_jpeg->mcu_membership[1] = 0; p_jpeg->mcu_membership[2] = 1; p_jpeg->mcu_membership[3] = 2; p_jpeg->tab_membership[0] = 0; /* DC, DC, AC, AC */ p_jpeg->tab_membership[1] = 0; p_jpeg->tab_membership[2] = 1; p_jpeg->tab_membership[3] = 1; p_jpeg->subsample_x[0] = 1; p_jpeg->subsample_x[1] = 2; p_jpeg->subsample_x[2] = 2; p_jpeg->subsample_y[0] = 1; p_jpeg->subsample_y[1] = 1; p_jpeg->subsample_y[2] = 1; } if (p_jpeg->frameheader[0].horizontal_sampling == 1 && p_jpeg->frameheader[0].vertical_sampling == 2) { /* 4:2:2 vertically subsampled */ p_jpeg->store_pos[1] = 2; /* block positions are mirrored */ p_jpeg->store_pos[2] = 1; p_jpeg->blocks = 4; p_jpeg->x_mbl = (p_jpeg->x_size+7) / 8; p_jpeg->x_phys = p_jpeg->x_mbl * 8; p_jpeg->y_mbl = (p_jpeg->y_size+15) / 16; p_jpeg->y_phys = p_jpeg->y_mbl * 16; p_jpeg->mcu_membership[0] = 0; /* Y1=Y2=0, U=1, V=2 */ p_jpeg->mcu_membership[1] = 0; p_jpeg->mcu_membership[2] = 1; p_jpeg->mcu_membership[3] = 2; p_jpeg->tab_membership[0] = 0; /* DC, DC, AC, AC */ p_jpeg->tab_membership[1] = 0; p_jpeg->tab_membership[2] = 1; p_jpeg->tab_membership[3] = 1; p_jpeg->subsample_x[0] = 1; p_jpeg->subsample_x[1] = 1; p_jpeg->subsample_x[2] = 1; p_jpeg->subsample_y[0] = 1; p_jpeg->subsample_y[1] = 2; p_jpeg->subsample_y[2] = 2; } else if (p_jpeg->frameheader[0].horizontal_sampling == 2 && p_jpeg->frameheader[0].vertical_sampling == 2) { /* 4:2:0 */ p_jpeg->blocks = 6; p_jpeg->x_mbl = (p_jpeg->x_size+15) / 16; p_jpeg->x_phys = p_jpeg->x_mbl * 16; p_jpeg->y_mbl = (p_jpeg->y_size+15) / 16; p_jpeg->y_phys = p_jpeg->y_mbl * 16; p_jpeg->mcu_membership[0] = 0; p_jpeg->mcu_membership[1] = 0; p_jpeg->mcu_membership[2] = 0; p_jpeg->mcu_membership[3] = 0; p_jpeg->mcu_membership[4] = 1; p_jpeg->mcu_membership[5] = 2; p_jpeg->tab_membership[0] = 0; p_jpeg->tab_membership[1] = 0; p_jpeg->tab_membership[2] = 0; p_jpeg->tab_membership[3] = 0; p_jpeg->tab_membership[4] = 1; p_jpeg->tab_membership[5] = 1; p_jpeg->subsample_x[0] = 1; p_jpeg->subsample_x[1] = 2; p_jpeg->subsample_x[2] = 2; p_jpeg->subsample_y[0] = 1; p_jpeg->subsample_y[1] = 2; p_jpeg->subsample_y[2] = 2; } else if (p_jpeg->frameheader[0].horizontal_sampling == 1 && p_jpeg->frameheader[0].vertical_sampling == 1) { /* 4:4:4 */ /* don't overwrite p_jpeg->blocks */ p_jpeg->x_mbl = (p_jpeg->x_size+7) / 8; p_jpeg->x_phys = p_jpeg->x_mbl * 8; p_jpeg->y_mbl = (p_jpeg->y_size+7) / 8; p_jpeg->y_phys = p_jpeg->y_mbl * 8; p_jpeg->mcu_membership[0] = 0; p_jpeg->mcu_membership[1] = 1; p_jpeg->mcu_membership[2] = 2; p_jpeg->tab_membership[0] = 0; p_jpeg->tab_membership[1] = 1; p_jpeg->tab_membership[2] = 1; p_jpeg->subsample_x[0] = 1; p_jpeg->subsample_x[1] = 1; p_jpeg->subsample_x[2] = 1; p_jpeg->subsample_y[0] = 1; p_jpeg->subsample_y[1] = 1; p_jpeg->subsample_y[2] = 1; } else { /* error */ } } INLINE void fix_huff_tables(struct jpeg *p_jpeg) { fix_huff_tbl(p_jpeg->hufftable[0].huffmancodes_dc, &p_jpeg->dc_derived_tbls[0]); fix_huff_tbl(p_jpeg->hufftable[0].huffmancodes_ac, &p_jpeg->ac_derived_tbls[0]); fix_huff_tbl(p_jpeg->hufftable[1].huffmancodes_dc, &p_jpeg->dc_derived_tbls[1]); fix_huff_tbl(p_jpeg->hufftable[1].huffmancodes_ac, &p_jpeg->ac_derived_tbls[1]); } /* Because some of the IDCT routines never multiply by any constants, and * therefore do not produce shifted output, we add the shift into the * quantization table when one of these IDCT routines is used, rather than * have the IDCT shift each value it processes. */ INLINE void fix_quant_tables(struct jpeg *p_jpeg) { int shift, i, x, y, a; for (i = 0; i < 2; i++) { shift = idct_tbl[p_jpeg->v_scale[i]].v_scale + idct_tbl[p_jpeg->h_scale[i]].h_scale; if (shift) { a = 0; for (y = 0; y < 1 << p_jpeg->h_scale[i]; y++) { for (x = 0; x < 1 << p_jpeg->v_scale[i]; x++) p_jpeg->quanttable[i][zig[a+x]] <<= shift; a += 8; } } } } /* * These functions/macros provide the in-line portion of bit fetching. * Use check_bit_buffer to ensure there are N bits in get_buffer * before using get_bits, peek_bits, or drop_bits. * check_bit_buffer(state,n,action); * Ensure there are N bits in get_buffer; if suspend, take action. * val = get_bits(n); * Fetch next N bits. * val = peek_bits(n); * Fetch next N bits without removing them from the buffer. * drop_bits(n); * Discard next N bits. * The value N should be a simple variable, not an expression, because it * is evaluated multiple times. */ static void fill_bit_buffer(struct jpeg* p_jpeg) { unsigned char byte, marker; if (p_jpeg->marker_val) p_jpeg->marker_ind += 16; byte = d_getc(p_jpeg, 0); if (UNLIKELY(byte == 0xFF)) /* legal marker can be byte stuffing or RSTm */ { /* simplification: just skip the (one-byte) marker code */ marker = d_getc(p_jpeg, 0); if ((marker & ~7) == 0xD0) { p_jpeg->marker_val = marker; p_jpeg->marker_ind = 8; } } p_jpeg->bitbuf = (p_jpeg->bitbuf << 8) | byte; byte = d_getc(p_jpeg, 0); if (UNLIKELY(byte == 0xFF)) /* legal marker can be byte stuffing or RSTm */ { /* simplification: just skip the (one-byte) marker code */ marker = d_getc(p_jpeg, 0); if ((marker & ~7) == 0xD0) { p_jpeg->marker_val = marker; p_jpeg->marker_ind = 0; } } p_jpeg->bitbuf = (p_jpeg->bitbuf << 8) | byte; p_jpeg->bitbuf_bits += 16; #ifdef JPEG_BS_DEBUG DEBUGF("read in: %04X\n", p_jpeg->bitbuf & 0xFFFF); #endif } INLINE void check_bit_buffer(struct jpeg *p_jpeg, int nbits) { if (nbits > p_jpeg->bitbuf_bits) fill_bit_buffer(p_jpeg); } INLINE int get_bits(struct jpeg *p_jpeg, int nbits) { #ifdef JPEG_BS_DEBUG if (nbits > p_jpeg->bitbuf_bits) DEBUGF("bitbuffer underrun\n"); int mask = 1 << (p_jpeg->bitbuf_bits - 1); int i; DEBUGF("get %d bits: ", nbits); for (i = 0; i < nbits; i++) DEBUGF("%d",!!(p_jpeg->bitbuf & (mask >>= 1))); DEBUGF("\n"); #endif return ((int) (p_jpeg->bitbuf >> (p_jpeg->bitbuf_bits -= nbits))) & ((1<bitbuf_bits - 1); int i; DEBUGF("peek %d bits: ", nbits); for (i = 0; i < nbits; i++) DEBUGF("%d",!!(p_jpeg->bitbuf & (mask >>= 1))); DEBUGF("\n"); #endif return ((int) (p_jpeg->bitbuf >> (p_jpeg->bitbuf_bits - nbits))) & ((1<bitbuf_bits - 1); int i; DEBUGF("drop %d bits: ", nbits); for (i = 0; i < nbits; i++) DEBUGF("%d",!!(p_jpeg->bitbuf & (mask >>= 1))); DEBUGF("\n"); #endif p_jpeg->bitbuf_bits -= nbits; } /* re-synchronize to entropy data (skip restart marker) */ static void search_restart(struct jpeg *p_jpeg) { if (p_jpeg->marker_val) { p_jpeg->marker_val = 0; p_jpeg->bitbuf_bits = p_jpeg->marker_ind; p_jpeg->marker_ind = 0; return; } unsigned char byte; p_jpeg->bitbuf_bits = 0; while ((byte = d_getc(p_jpeg, 0xFF))) { if (byte == 0xff) { byte = d_getc(p_jpeg, 0xD0); if ((byte & ~7) == 0xD0) { return; } else putc(p_jpeg); } } } /* Figure F.12: extend sign bit. */ #if CONFIG_CPU == SH7034 /* SH1 lacks a variable-shift instruction */ #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) static const int extend_test[16] = /* entry n is 2**(n-1) */ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; #else /* This saves some code and data size, benchmarks about the same on RAM */ #define HUFF_EXTEND(x,s) \ ({ \ int x__ = x; \ int s__ = s; \ x__ & (1 << (s__- 1)) ? x__ : x__ + (-1 << s__) + 1; \ }) #endif /* Decode a single value */ #define huff_decode_dc(p_jpeg, tbl, s, r) \ { \ int nb, look; \ \ check_bit_buffer((p_jpeg), HUFF_LOOKAHEAD); \ look = peek_bits((p_jpeg), HUFF_LOOKAHEAD); \ if ((nb = (tbl)->look_nbits[look]) != 0) \ { \ drop_bits((p_jpeg), nb); \ s = (tbl)->look_sym[look]; \ check_bit_buffer((p_jpeg), s); \ r = get_bits((p_jpeg), s); \ } else { \ /* slow_DECODE(s, HUFF_LOOKAHEAD+1)) < 0); */ \ long code; \ nb=HUFF_LOOKAHEAD+1; \ check_bit_buffer((p_jpeg), nb); \ code = get_bits((p_jpeg), nb); \ while (code > (tbl)->maxcode[nb]) \ { \ code <<= 1; \ check_bit_buffer((p_jpeg), 1); \ code |= get_bits((p_jpeg), 1); \ nb++; \ } \ if (nb > 16) /* error in Huffman */ \ { \ r = 0; s = 0; /* fake a zero, this is most safe */ \ } else { \ s = (tbl)->pub[16 + (tbl)->valptr[nb] + \ ((int) (code - (tbl)->mincode[nb]))]; \ check_bit_buffer((p_jpeg), s); \ r = get_bits((p_jpeg), s); \ } \ } /* end slow decode */ \ } #define huff_decode_ac(p_jpeg, tbl, s) \ { \ int nb, look; \ \ check_bit_buffer((p_jpeg), HUFF_LOOKAHEAD); \ look = peek_bits((p_jpeg), HUFF_LOOKAHEAD); \ if ((nb = (tbl)->look_nbits[look]) != 0) \ { \ drop_bits((p_jpeg), nb); \ s = (tbl)->look_sym[look]; \ } else { \ /* slow_DECODE(s, HUFF_LOOKAHEAD+1)) < 0); */ \ long code; \ nb=HUFF_LOOKAHEAD+1; \ check_bit_buffer((p_jpeg), nb); \ code = get_bits((p_jpeg), nb); \ while (code > (tbl)->maxcode[nb]) \ { \ code <<= 1; \ check_bit_buffer((p_jpeg), 1); \ code |= get_bits((p_jpeg), 1); \ nb++; \ } \ if (nb > 16) /* error in Huffman */ \ { \ s = 0; /* fake a zero, this is most safe */ \ } else { \ s = (tbl)->pub[16 + (tbl)->valptr[nb] + \ ((int) (code - (tbl)->mincode[nb]))]; \ } \ } /* end slow decode */ \ } static struct img_part *store_row_jpeg(void *jpeg_args) { struct jpeg *p_jpeg = (struct jpeg*) jpeg_args; #ifdef HAVE_LCD_COLOR int mcu_hscale = p_jpeg->h_scale[1]; int mcu_vscale = p_jpeg->v_scale[1]; #else int mcu_hscale = (p_jpeg->h_scale[0] + p_jpeg->frameheader[0].horizontal_sampling - 1); int mcu_vscale = (p_jpeg->v_scale[0] + p_jpeg->frameheader[0].vertical_sampling - 1); #endif unsigned int width = p_jpeg->x_mbl << mcu_hscale; unsigned int b_width = width * JPEG_PIX_SZ; int height = 1U << mcu_vscale; int x; if (!p_jpeg->mcu_row) /* Need to decode a new row of MCUs */ { p_jpeg->out_ptr = (unsigned char *)p_jpeg->img_buf; int store_offs[4]; #ifdef HAVE_LCD_COLOR unsigned mcu_width = 1U << mcu_hscale; #endif int mcu_offset = JPEG_PIX_SZ << mcu_hscale; unsigned char *out = p_jpeg->out_ptr; store_offs[p_jpeg->store_pos[0]] = 0; store_offs[p_jpeg->store_pos[1]] = JPEG_PIX_SZ << p_jpeg->h_scale[0]; store_offs[p_jpeg->store_pos[2]] = b_width << p_jpeg->v_scale[0]; store_offs[p_jpeg->store_pos[3]] = store_offs[1] + store_offs[2]; int block[128]; /* decoded DCT coefficients */ for (x = 0; x < p_jpeg->x_mbl; x++) { int blkn; for (blkn = 0; blkn < p_jpeg->blocks; blkn++) { int k = 1; /* coefficient index */ int s, r; /* huffman values */ int ci = p_jpeg->mcu_membership[blkn]; /* component index */ int ti = p_jpeg->tab_membership[blkn]; /* table index */ struct derived_tbl* dctbl = &p_jpeg->dc_derived_tbls[ti]; struct derived_tbl* actbl = &p_jpeg->ac_derived_tbls[ti]; /* Section F.2.2.1: decode the DC coefficient difference */ huff_decode_dc(p_jpeg, dctbl, s, r); #ifndef HAVE_LCD_COLOR if (!ci) #endif { s = HUFF_EXTEND(r, s); #ifdef HAVE_LCD_COLOR p_jpeg->last_dc_val[ci] += s; /* output it (assumes zag[0] = 0) */ block[0] = p_jpeg->last_dc_val[ci] * p_jpeg->quanttable[!!ci][0]; #else p_jpeg->last_dc_val += s; /* output it (assumes zag[0] = 0) */ block[0] = p_jpeg->last_dc_val * p_jpeg->quanttable[0][0]; #endif /* coefficient buffer must be cleared */ MEMSET(block+1, 0, p_jpeg->zero_need[!!ci] * sizeof(int)); /* Section F.2.2.2: decode the AC coefficients */ for (; k < p_jpeg->k_need[!!ci]; k++) { huff_decode_ac(p_jpeg, actbl, s); r = s >> 4; s &= 15; if (s) { k += r; check_bit_buffer(p_jpeg, s); r = get_bits(p_jpeg, s); r = HUFF_EXTEND(r, s); int a = zag[k]; if (a <= zag[p_jpeg->k_need[!!ci]] && (a & 7) <= (zag[p_jpeg->k_need[!!ci]] & 7)) { r *= p_jpeg->quanttable[!!ci][k]; block[zag[k]] = r ; } } else { if (r != 15) { k = 64; break; } k += r; } } /* for k */ } for (; k < 64; k++) { huff_decode_ac(p_jpeg, actbl, s); r = s >> 4; s &= 15; if (s) { k += r; check_bit_buffer(p_jpeg, s); drop_bits(p_jpeg, s); } else { if (r != 15) break; k += r; } } /* for k */ #ifndef HAVE_LCD_COLOR if (!ci) #endif { int idct_cols = 1 << MIN(p_jpeg->h_scale[!!ci], 3); int idct_rows = 1 << p_jpeg->v_scale[!!ci]; unsigned char *b_out = out + (ci ? ci : store_offs[blkn]); if (idct_tbl[p_jpeg->v_scale[!!ci]].v_idct) idct_tbl[p_jpeg->v_scale[!!ci]].v_idct(block, idct_cols); idct_tbl[p_jpeg->h_scale[!!ci]].h_idct(block, b_out, idct_rows, b_width); } } /* for blkn */ /* don't starve other threads while an MCU row decodes */ yield(); #ifdef HAVE_LCD_COLOR unsigned int xp; int yp; unsigned char *row = out; if (p_jpeg->blocks == 1) { for (yp = 0; yp < height; yp++, row += b_width) { unsigned char *px = row; for (xp = 0; xp < mcu_width; xp++, px += JPEG_PIX_SZ) { px[1] = px[2] = px[0]; } } } #endif out += mcu_offset; if (p_jpeg->restart_interval && --p_jpeg->restart == 0) { /* if a restart marker is due: */ p_jpeg->restart = p_jpeg->restart_interval; /* count again */ search_restart(p_jpeg); /* align the bitstream */ #ifdef HAVE_LCD_COLOR p_jpeg->last_dc_val[0] = p_jpeg->last_dc_val[1] = p_jpeg->last_dc_val[2] = 0; /* reset decoder */ #else p_jpeg->last_dc_val = 0; #endif } } } /* if !p_jpeg->mcu_row */ p_jpeg->mcu_row = (p_jpeg->mcu_row + 1) & (height - 1); p_jpeg->part.len = width; p_jpeg->part.buf = (jpeg_pix_t *)p_jpeg->out_ptr; p_jpeg->out_ptr += b_width; return &(p_jpeg->part); } /****************************************************************************** * read_jpeg_file() * * Reads a JPEG file and puts the data in rockbox format in *bitmap. * *****************************************************************************/ #ifndef JPEG_FROM_MEM int read_jpeg_file(const char* filename, struct bitmap *bm, int maxsize, int format, const struct custom_format *cformat) { int fd, ret; fd = open(filename, O_RDONLY); JDEBUGF("read_jpeg_file: filename: %s buffer len: %d cformat: %p\n", filename, maxsize, cformat); /* Exit if file opening failed */ if (fd < 0) { DEBUGF("read_jpeg_file: can't open '%s', rc: %d\n", filename, fd); return fd * 10 - 1; } ret = read_jpeg_fd(fd, bm, maxsize, format, cformat); close(fd); return ret; } #endif static int calc_scale(int in_size, int out_size) { int scale = 0; out_size <<= 3; for (scale = 0; scale < 3; scale++) { if (out_size <= in_size) break; else in_size <<= 1; } return scale; } #ifdef JPEG_FROM_MEM int get_jpeg_dim_mem(unsigned char *data, unsigned long len, struct dim *size) { struct jpeg *p_jpeg = &jpeg; memset(p_jpeg, 0, sizeof(struct jpeg)); p_jpeg->data = data; p_jpeg->len = len; int status = process_markers(p_jpeg); if (status < 0) return status; if ((status & (DQT | SOF0)) != (DQT | SOF0)) return -(status * 16); size->width = p_jpeg->x_size; size->height = p_jpeg->y_size; return 0; } int decode_jpeg_mem(unsigned char *data, unsigned long len, #else int read_jpeg_fd(int fd, #endif struct bitmap *bm, int maxsize, int format, const struct custom_format *cformat) { bool resize = false, dither = false; struct rowset rset; struct dim src_dim; int status; int bm_size; #ifdef JPEG_FROM_MEM struct jpeg *p_jpeg = &jpeg; #else struct jpeg *p_jpeg = (struct jpeg*)bm->data; int tmp_size = maxsize; ALIGN_BUFFER(p_jpeg, tmp_size, sizeof(int)); /* not enough memory for our struct jpeg */ if ((size_t)tmp_size < sizeof(struct jpeg)) return -1; #endif memset(p_jpeg, 0, sizeof(struct jpeg)); #ifdef JPEG_FROM_MEM p_jpeg->data = data; p_jpeg->len = len; #else p_jpeg->fd = fd; #endif status = process_markers(p_jpeg); #ifndef JPEG_FROM_MEM JDEBUGF("position in file: %d buffer fill: %d\n", (int)lseek(p_jpeg->fd, 0, SEEK_CUR), p_jpeg->buf_left); #endif if (status < 0) return status; if ((status & (DQT | SOF0)) != (DQT | SOF0)) return -(status * 16); if (!(status & DHT)) /* if no Huffman table present: */ default_huff_tbl(p_jpeg); /* use default */ fix_headers(p_jpeg); /* derive Huffman and other lookup-tables */ src_dim.width = p_jpeg->x_size; src_dim.height = p_jpeg->y_size; if (format & FORMAT_RESIZE) resize = true; if (format & FORMAT_DITHER) dither = true; if (resize) { struct dim resize_dim = { .width = bm->width, .height = bm->height, }; if (format & FORMAT_KEEP_ASPECT) recalc_dimension(&resize_dim, &src_dim); bm->width = resize_dim.width; bm->height = resize_dim.height; } else { bm->width = p_jpeg->x_size; bm->height = p_jpeg->y_size; } p_jpeg->h_scale[0] = calc_scale(p_jpeg->x_size, bm->width); p_jpeg->v_scale[0] = calc_scale(p_jpeg->y_size, bm->height); JDEBUGF("luma IDCT size: %dx%d\n", 1 << p_jpeg->h_scale[0], 1 << p_jpeg->v_scale[0]); if ((p_jpeg->x_size << p_jpeg->h_scale[0]) >> 3 == bm->width && (p_jpeg->y_size << p_jpeg->v_scale[0]) >> 3 == bm->height) resize = false; #ifdef HAVE_LCD_COLOR p_jpeg->h_scale[1] = p_jpeg->h_scale[0] + p_jpeg->frameheader[0].horizontal_sampling - 1; p_jpeg->v_scale[1] = p_jpeg->v_scale[0] + p_jpeg->frameheader[0].vertical_sampling - 1; JDEBUGF("chroma IDCT size: %dx%d\n", 1 << p_jpeg->h_scale[1], 1 << p_jpeg->v_scale[1]); #endif JDEBUGF("scaling from %dx%d -> %dx%d\n", (p_jpeg->x_size << p_jpeg->h_scale[0]) >> 3, (p_jpeg->y_size << p_jpeg->v_scale[0]) >> 3, bm->width, bm->height); fix_quant_tables(p_jpeg); int decode_w = (1 << p_jpeg->h_scale[0]) - 1; int decode_h = (1 << p_jpeg->v_scale[0]) - 1; src_dim.width = (p_jpeg->x_size << p_jpeg->h_scale[0]) >> 3; src_dim.height = (p_jpeg->y_size << p_jpeg->v_scale[0]) >> 3; p_jpeg->zero_need[0] = (decode_h << 3) + decode_w; p_jpeg->k_need[0] = zig[p_jpeg->zero_need[0]]; JDEBUGF("need luma components to %d\n", p_jpeg->k_need[0]); #ifdef HAVE_LCD_COLOR decode_w = (1 << MIN(p_jpeg->h_scale[1],3)) - 1; decode_h = (1 << MIN(p_jpeg->v_scale[1],3)) - 1; p_jpeg->zero_need[1] = (decode_h << 3) + decode_w; p_jpeg->k_need[1] = zig[p_jpeg->zero_need[1]]; JDEBUGF("need chroma components to %d\n", p_jpeg->k_need[1]); #endif if (cformat) bm_size = cformat->get_size(bm); else bm_size = BM_SIZE(bm->width,bm->height,FORMAT_NATIVE,false); if (bm_size > maxsize) return -1; char *buf_start = (char *)bm->data + bm_size; char *buf_end = (char *)bm->data + maxsize; maxsize = buf_end - buf_start; #ifndef JPEG_FROM_MEM ALIGN_BUFFER(buf_start, maxsize, sizeof(uint32_t)); if (maxsize < (int)sizeof(struct jpeg)) return -1; memmove(buf_start, p_jpeg, sizeof(struct jpeg)); p_jpeg = (struct jpeg *)buf_start; buf_start += sizeof(struct jpeg); maxsize = buf_end - buf_start; #endif fix_huff_tables(p_jpeg); #ifdef HAVE_LCD_COLOR int decode_buf_size = (p_jpeg->x_mbl << p_jpeg->h_scale[1]) << p_jpeg->v_scale[1]; #else int decode_buf_size = (p_jpeg->x_mbl << p_jpeg->h_scale[0]) << p_jpeg->v_scale[0]; decode_buf_size <<= p_jpeg->frameheader[0].horizontal_sampling + p_jpeg->frameheader[0].vertical_sampling - 2; #endif decode_buf_size *= JPEG_PIX_SZ; JDEBUGF("decode buffer size: %d\n", decode_buf_size); p_jpeg->img_buf = (jpeg_pix_t *)buf_start; if (buf_end - buf_start < decode_buf_size) return -1; buf_start += decode_buf_size; maxsize = buf_end - buf_start; memset(p_jpeg->img_buf, 0, decode_buf_size); p_jpeg->mcu_row = 0; p_jpeg->restart = p_jpeg->restart_interval; rset.rowstart = 0; rset.rowstop = bm->height; rset.rowstep = 1; p_jpeg->resize = resize; if (resize) { if (resize_on_load(bm, dither, &src_dim, &rset, buf_start, maxsize, cformat, IF_PIX_FMT(p_jpeg->blocks == 1 ? 0 : 1,) store_row_jpeg, p_jpeg)) return bm_size; } else { int row; struct scaler_context ctx = { .bm = bm, .dither = dither, }; #if LCD_DEPTH > 1 void (*output_row_8)(uint32_t, void*, struct scaler_context*) = output_row_8_native; #elif defined(PLUGIN) void (*output_row_8)(uint32_t, void*, struct scaler_context*) = NULL; #endif #if LCD_DEPTH > 1 || defined(PLUGIN) if (cformat) output_row_8 = cformat->output_row_8; #endif struct img_part *part; for (row = 0; row < bm->height; row++) { part = store_row_jpeg(p_jpeg); #ifdef HAVE_LCD_COLOR struct uint8_rgb *qp = part->buf; struct uint8_rgb *end = qp + bm->width; uint8_t y, u, v; unsigned r, g, b; for (; qp < end; qp++) { y = qp->blue; u = qp->green; v = qp->red; yuv_to_rgb(y, u, v, &r, &g, &b); qp->red = r; qp->blue = b; qp->green = g; } #endif output_row_8(row, part->buf, &ctx); } return bm_size; } return 0; } /**************** end JPEG code ********************/