/* * fifteen.c: standard 15-puzzle. */ #include #include #include #include "rbassert.h" #include #include #include "puzzles.h" #define PREFERRED_TILE_SIZE 48 #define TILE_SIZE (ds->tilesize) #define BORDER (TILE_SIZE / 2) #define HIGHLIGHT_WIDTH (TILE_SIZE / 20) #define COORD(x) ( (x) * TILE_SIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 ) #define ANIM_TIME 0.13F #define FLASH_FRAME 0.13F #define X(state, i) ( (i) % (state)->w ) #define Y(state, i) ( (i) / (state)->w ) #define C(state, x, y) ( (y) * (state)->w + (x) ) #define PARITY_P(params, gap) (((X((params), (gap)) - ((params)->w - 1)) ^ \ (Y((params), (gap)) - ((params)->h - 1)) ^ \ (((params)->w * (params)->h) + 1)) & 1) #define PARITY_S(state) PARITY_P((state), ((state)->gap_pos)) enum { COL_BACKGROUND, COL_TEXT, COL_HIGHLIGHT, COL_LOWLIGHT, NCOLOURS }; struct game_params { int w, h; }; struct game_state { int w, h, n; int *tiles; int gap_pos; int completed; int used_solve; /* used to suppress completion flash */ int movecount; }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 4; return ret; } static int game_fetch_preset(int i, char **name, game_params **params) { if (i == 0) { *params = default_params(); *name = dupstr("4x4"); return TRUE; } return FALSE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *ret, char const *string) { ret->w = ret->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; ret->h = atoi(string); } } static char *encode_params(const game_params *params, int full) { char data[256]; sprintf(data, "%dx%d", params->w, params->h); return dupstr(data); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(3, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = NULL; ret[2].type = C_END; ret[2].sval = NULL; ret[2].ival = 0; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].sval); ret->h = atoi(cfg[1].sval); return ret; } static char *validate_params(const game_params *params, int full) { if (params->w < 2 || params->h < 2) return "Width and height must both be at least two"; return NULL; } static int perm_parity(int *perm, int n) { int i, j, ret; ret = 0; for (i = 0; i < n-1; i++) for (j = i+1; j < n; j++) if (perm[i] > perm[j]) ret = !ret; return ret; } static char *new_game_desc(const game_params *params, random_state *rs, char **aux, int interactive) { int gap, n, i, x; int x1, x2, p1, p2, parity; int *tiles, *used; char *ret; int retlen; n = params->w * params->h; tiles = snewn(n, int); used = snewn(n, int); for (i = 0; i < n; i++) { tiles[i] = -1; used[i] = FALSE; } gap = random_upto(rs, n); tiles[gap] = 0; used[0] = TRUE; /* * Place everything else except the last two tiles. */ for (x = 0, i = n-1; i > 2; i--) { int k = random_upto(rs, i); int j; for (j = 0; j < n; j++) if (!used[j] && (k-- == 0)) break; assert(j < n && !used[j]); used[j] = TRUE; while (tiles[x] >= 0) x++; assert(x < n); tiles[x] = j; } /* * Find the last two locations, and the last two pieces. */ while (tiles[x] >= 0) x++; assert(x < n); x1 = x; x++; while (tiles[x] >= 0) x++; assert(x < n); x2 = x; for (i = 0; i < n; i++) if (!used[i]) break; p1 = i; for (i = p1+1; i < n; i++) if (!used[i]) break; p2 = i; /* * Determine the required parity of the overall permutation. * This is the XOR of: * * - The chessboard parity ((x^y)&1) of the gap square. The * bottom right counts as even. * * - The parity of n. (The target permutation is 1,...,n-1,0 * rather than 0,...,n-1; this is a cyclic permutation of * the starting point and hence is odd iff n is even.) */ parity = PARITY_P(params, gap); /* * Try the last two tiles one way round. If that fails, swap * them. */ tiles[x1] = p1; tiles[x2] = p2; if (perm_parity(tiles, n) != parity) { tiles[x1] = p2; tiles[x2] = p1; assert(perm_parity(tiles, n) == parity); } /* * Now construct the game description, by describing the tile * array as a simple sequence of comma-separated integers. */ ret = NULL; retlen = 0; for (i = 0; i < n; i++) { char buf[80]; int k; k = sprintf(buf, "%d,", tiles[i]); ret = sresize(ret, retlen + k + 1, char); strcpy(ret + retlen, buf); retlen += k; } ret[retlen-1] = '\0'; /* delete last comma */ sfree(tiles); sfree(used); return ret; } static char *validate_desc(const game_params *params, const char *desc) { const char *p; char *err; int i, area; int *used; area = params->w * params->h; p = desc; err = NULL; used = snewn(area, int); for (i = 0; i < area; i++) used[i] = FALSE; for (i = 0; i < area; i++) { const char *q = p; int n; if (*p < '0' || *p > '9') { err = "Not enough numbers in string"; goto leave; } while (*p >= '0' && *p <= '9') p++; if (i < area-1 && *p != ',') { err = "Expected comma after number"; goto leave; } else if (i == area-1 && *p) { err = "Excess junk at end of string"; goto leave; } n = atoi(q); if (n < 0 || n >= area) { err = "Number out of range"; goto leave; } if (used[n]) { err = "Number used twice"; goto leave; } used[n] = TRUE; if (*p) p++; /* eat comma */ } leave: sfree(used); return err; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { game_state *state = snew(game_state); int i; const char *p; state->w = params->w; state->h = params->h; state->n = params->w * params->h; state->tiles = snewn(state->n, int); state->gap_pos = 0; p = desc; i = 0; for (i = 0; i < state->n; i++) { assert(*p); state->tiles[i] = atoi(p); if (state->tiles[i] == 0) state->gap_pos = i; while (*p && *p != ',') p++; if (*p) p++; /* eat comma */ } assert(!*p); assert(state->tiles[state->gap_pos] == 0); state->completed = state->movecount = 0; state->used_solve = FALSE; return state; } static game_state *dup_game(const game_state *state) { game_state *ret = snew(game_state); ret->w = state->w; ret->h = state->h; ret->n = state->n; ret->tiles = snewn(state->w * state->h, int); memcpy(ret->tiles, state->tiles, state->w * state->h * sizeof(int)); ret->gap_pos = state->gap_pos; ret->completed = state->completed; ret->movecount = state->movecount; ret->used_solve = state->used_solve; return ret; } static void free_game(game_state *state) { sfree(state->tiles); sfree(state); } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, char **error) { return dupstr("S"); } static int game_can_format_as_text_now(const game_params *params) { return TRUE; } static char *game_text_format(const game_state *state) { char *ret, *p, buf[80]; int x, y, col, maxlen; /* * First work out how many characters we need to display each * number. */ col = sprintf(buf, "%d", state->n-1); /* * Now we know the exact total size of the grid we're going to * produce: it's got h rows, each containing w lots of col, w-1 * spaces and a trailing newline. */ maxlen = state->h * state->w * (col+1); ret = snewn(maxlen+1, char); p = ret; for (y = 0; y < state->h; y++) { for (x = 0; x < state->w; x++) { int v = state->tiles[state->w*y+x]; if (v == 0) sprintf(buf, "%*s", col, ""); else sprintf(buf, "%*d", col, v); memcpy(p, buf, col); p += col; if (x+1 == state->w) *p++ = '\n'; else *p++ = ' '; } } assert(p - ret == maxlen); *p = '\0'; return ret; } static game_ui *new_ui(const game_state *state) { return NULL; } static void free_ui(game_ui *ui) { } static char *encode_ui(const game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, const char *encoding) { } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { } struct game_drawstate { int started; int w, h, bgcolour; int *tiles; int tilesize; }; static int flip_cursor(int button) { switch (button) { case CURSOR_UP: return CURSOR_DOWN; case CURSOR_DOWN: return CURSOR_UP; case CURSOR_LEFT: return CURSOR_RIGHT; case CURSOR_RIGHT: return CURSOR_LEFT; } return 0; } static void next_move_3x2(int ax, int ay, int bx, int by, int gx, int gy, int *dx, int *dy) { /* When w = 3 and h = 2 and the tile going in the top left corner * is at (ax, ay) and the tile going in the bottom left corner is * at (bx, by) and the blank tile is at (gx, gy), how do you move? */ /* Hard-coded shortest solutions. Sorry. */ static const unsigned char move[120] = { 1,2,0,1,2,2, 2,0,0,2,0,0, 0,0,2,0,2,0, 0,0,0,2,0,2, 2,0,0,0,2,0, 0,3,0,1,1,1, 3,0,3,2,1,2, 2,1,1,0,1,0, 2,1,2,1,0,1, 1,2,0,2,1,2, 0,1,3,1,3,0, 1,3,1,3,0,3, 0,0,3,3,0,0, 0,0,0,1,2,1, 3,0,0,1,1,1, 3,1,1,1,3,0, 1,1,1,1,1,1, 1,3,1,1,3,0, 1,1,3,3,1,3, 1,3,0,0,0,0 }; static const struct { int dx, dy; } d[4] = {{+1,0},{-1,0},{0,+1},{0,-1}}; int ea = 3*ay + ax, eb = 3*by + bx, eg = 3*gy + gx, v; if (eb > ea) --eb; if (eg > ea) --eg; if (eg > eb) --eg; v = move[ea + eb*6 + eg*5*6]; *dx = d[v].dx; *dy = d[v].dy; } static void next_move(int nx, int ny, int ox, int oy, int gx, int gy, int tx, int ty, int w, int *dx, int *dy) { const int to_tile_x = (gx < nx ? +1 : -1); const int to_goal_x = (gx < tx ? +1 : -1); const int gap_x_on_goal_side = ((nx-tx) * (nx-gx) > 0); assert (nx != tx || ny != ty); /* not already in place */ assert (nx != gx || ny != gy); /* not placing the gap */ assert (ty <= ny); /* because we're greedy (and flipping) */ assert (ty <= gy); /* because we're greedy (and flipping) */ /* TODO: define a termination function. Idea: 0 if solved, or * the number of moves to solve the next piece plus the number of * further unsolved pieces times an upper bound on the number of * moves required to solve any piece. If such a function can be * found, we have (termination && (termination => correctness)). * The catch is our temporary disturbance of 2x3 corners. */ /* handles end-of-row, when 3 and 4 are in the top right 2x3 box */ if (tx == w - 2 && ny <= ty + 2 && (nx == tx || nx == tx + 1) && oy <= ty + 2 && (ox == tx || ox == tx + 1) && gy <= ty + 2 && (gx == tx || gx == tx + 1)) { next_move_3x2(oy - ty, tx + 1 - ox, ny - ty, tx + 1 - nx, gy - ty, tx + 1 - gx, dy, dx); *dx *= -1; return; } if (tx == w - 1) { if (ny <= ty + 2 && (nx == tx || nx == tx - 1) && gy <= ty + 2 && (gx == tx || gx == tx - 1)) { next_move_3x2(ny - ty, tx - nx, 0, 1, gy - ty, tx - gx, dy, dx); *dx *= -1; } else if (gy == ty) *dy = +1; else if (nx != tx || ny != ty + 1) { next_move((w - 1) - nx, ny, -1, -1, (w - 1) - gx, gy, 0, ty + 1, -1, dx, dy); *dx *= -1; } else if (gx == nx) *dy = -1; else *dx = +1; return; } /* note that *dy = -1 is unsafe when gy = ty + 1 and gx < tx */ if (gy < ny) if (nx == gx || (gy == ty && gx == tx)) *dy = +1; else if (!gap_x_on_goal_side) *dx = to_tile_x; else if (ny - ty > abs(nx - tx)) *dx = to_tile_x; else *dy = +1; else if (gy == ny) if (nx == tx) /* then we know ny > ty */ if (gx > nx || ny > ty + 1) *dy = -1; /* ... so this is safe */ else *dy = +1; else if (gap_x_on_goal_side) *dx = to_tile_x; else if (gy == ty || (gy == ty + 1 && gx < tx)) *dy = +1; else *dy = -1; else if (nx == tx) /* gy > ny */ if (gx > nx) *dy = -1; else *dx = +1; else if (gx == nx) *dx = to_goal_x; else if (gap_x_on_goal_side) if (gy == ty + 1 && gx < tx) *dx = to_tile_x; else *dy = -1; else if (ny - ty > abs(nx - tx)) *dy = -1; else *dx = to_tile_x; } static int compute_hint(const game_state *state, int *out_x, int *out_y) { /* The overall solving process is this: * 1. Find the next piece to be put in its place * 2. Move it diagonally towards its place * 3. Move it horizontally or vertically towards its place * (Modulo the last two tiles at the end of each row/column) */ int gx = X(state, state->gap_pos); int gy = Y(state, state->gap_pos); int tx, ty, nx, ny, ox, oy, /* {target,next,next2}_{x,y} */ i; int dx = 0, dy = 0; /* 1. Find the next piece * if (there are no more unfinished columns than rows) { * fill the top-most row, left to right * } else { fill the left-most column, top to bottom } */ const int w = state->w, h = state->h, n = w*h; int next_piece = 0, next_piece_2 = 0, solr = 0, solc = 0; int unsolved_rows = h, unsolved_cols = w; assert(out_x); assert(out_y); while (solr < h && solc < w) { int start, step, stop; if (unsolved_cols <= unsolved_rows) start = solr*w + solc, step = 1, stop = unsolved_cols; else start = solr*w + solc, step = w, stop = unsolved_rows; for (i = 0; i < stop; ++i) { const int j = start + i*step; if (state->tiles[j] != j + 1) { next_piece = j + 1; next_piece_2 = next_piece + step; break; } } if (i < stop) break; (unsolved_cols <= unsolved_rows) ? (++solr, --unsolved_rows) : (++solc, --unsolved_cols); } if (next_piece == n) return FALSE; /* 2, 3. Move the next piece towards its place */ /* gx, gy already set */ tx = X(state, next_piece - 1); /* where we're going */ ty = Y(state, next_piece - 1); for (i = 0; i < n && state->tiles[i] != next_piece; ++i); nx = X(state, i); /* where we're at */ ny = Y(state, i); for (i = 0; i < n && state->tiles[i] != next_piece_2; ++i); ox = X(state, i); oy = Y(state, i); if (unsolved_cols <= unsolved_rows) next_move(nx, ny, ox, oy, gx, gy, tx, ty, w, &dx, &dy); else next_move(ny, nx, oy, ox, gy, gx, ty, tx, h, &dy, &dx); assert (dx || dy); *out_x = gx + dx; *out_y = gy + dy; return TRUE; } static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int cx = X(state, state->gap_pos), nx = cx; int cy = Y(state, state->gap_pos), ny = cy; char buf[80]; button &= ~MOD_MASK; if (button == LEFT_BUTTON) { nx = FROMCOORD(x); ny = FROMCOORD(y); if (nx < 0 || nx >= state->w || ny < 0 || ny >= state->h) return NULL; /* out of bounds */ } else if (IS_CURSOR_MOVE(button)) { static int invert_cursor = -1; if (invert_cursor == -1) { char *env = getenv("FIFTEEN_INVERT_CURSOR"); invert_cursor = (env && (env[0] == 'y' || env[0] == 'Y')); } button = flip_cursor(button); /* the default */ if (invert_cursor) button = flip_cursor(button); /* undoes the first flip */ move_cursor(button, &nx, &ny, state->w, state->h, FALSE); } else if ((button == 'h' || button == 'H') && !state->completed) { if (!compute_hint(state, &nx, &ny)) return NULL; /* shouldn't happen, since ^^we^^checked^^ */ } else return NULL; /* no move */ /* * Any click location should be equal to the gap location * in _precisely_ one coordinate. */ if ((cx == nx) ^ (cy == ny)) { sprintf(buf, "M%d,%d", nx, ny); return dupstr(buf); } return NULL; } static game_state *execute_move(const game_state *from, const char *move) { int gx, gy, dx, dy, ux, uy, up, p; game_state *ret; if (!strcmp(move, "S")) { int i; ret = dup_game(from); /* * Simply replace the grid with a solved one. For this game, * this isn't a useful operation for actually telling the user * what they should have done, but it is useful for * conveniently being able to get hold of a clean state from * which to practise manoeuvres. */ for (i = 0; i < ret->n; i++) ret->tiles[i] = (i+1) % ret->n; ret->gap_pos = ret->n-1; ret->used_solve = TRUE; ret->completed = ret->movecount = 1; return ret; } gx = X(from, from->gap_pos); gy = Y(from, from->gap_pos); if (move[0] != 'M' || sscanf(move+1, "%d,%d", &dx, &dy) != 2 || (dx == gx && dy == gy) || (dx != gx && dy != gy) || dx < 0 || dx >= from->w || dy < 0 || dy >= from->h) return NULL; /* * Find the unit displacement from the original gap * position towards this one. */ ux = (dx < gx ? -1 : dx > gx ? +1 : 0); uy = (dy < gy ? -1 : dy > gy ? +1 : 0); up = C(from, ux, uy); ret = dup_game(from); ret->gap_pos = C(from, dx, dy); assert(ret->gap_pos >= 0 && ret->gap_pos < ret->n); ret->tiles[ret->gap_pos] = 0; for (p = from->gap_pos; p != ret->gap_pos; p += up) { assert(p >= 0 && p < from->n); ret->tiles[p] = from->tiles[p + up]; ret->movecount++; } /* * See if the game has been completed. */ if (!ret->completed) { ret->completed = ret->movecount; for (p = 0; p < ret->n; p++) if (ret->tiles[p] != (p < ret->n-1 ? p+1 : 0)) ret->completed = 0; } return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = TILE_SIZE * params->w + 2 * BORDER; *y = TILE_SIZE * params->h + 2 * BORDER; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); int i; game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT); for (i = 0; i < 3; i++) ret[COL_TEXT * 3 + i] = 0.0; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->started = FALSE; ds->w = state->w; ds->h = state->h; ds->bgcolour = COL_BACKGROUND; ds->tiles = snewn(ds->w*ds->h, int); ds->tilesize = 0; /* haven't decided yet */ for (i = 0; i < ds->w*ds->h; i++) ds->tiles[i] = -1; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->tiles); sfree(ds); } static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state, int x, int y, int tile, int flash_colour) { if (tile == 0) { draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE, flash_colour); } else { int coords[6]; char str[40]; coords[0] = x + TILE_SIZE - 1; coords[1] = y + TILE_SIZE - 1; coords[2] = x + TILE_SIZE - 1; coords[3] = y; coords[4] = x; coords[5] = y + TILE_SIZE - 1; draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT); coords[0] = x; coords[1] = y; draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT); draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, flash_colour); sprintf(str, "%d", tile); draw_text(dr, x + TILE_SIZE/2, y + TILE_SIZE/2, FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_TEXT, str); } draw_update(dr, x, y, TILE_SIZE, TILE_SIZE); } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int i, pass, bgcolour; if (flashtime > 0) { int frame = (int)(flashtime / FLASH_FRAME); bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT); } else bgcolour = COL_BACKGROUND; if (!ds->started) { int coords[10]; draw_rect(dr, 0, 0, TILE_SIZE * state->w + 2 * BORDER, TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND); draw_update(dr, 0, 0, TILE_SIZE * state->w + 2 * BORDER, TILE_SIZE * state->h + 2 * BORDER); /* * Recessed area containing the whole puzzle. */ coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; coords[3] = COORD(0) - HIGHLIGHT_WIDTH; coords[4] = coords[2] - TILE_SIZE; coords[5] = coords[3] + TILE_SIZE; coords[8] = COORD(0) - HIGHLIGHT_WIDTH; coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; coords[6] = coords[8] + TILE_SIZE; coords[7] = coords[9] - TILE_SIZE; draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT); coords[1] = COORD(0) - HIGHLIGHT_WIDTH; coords[0] = COORD(0) - HIGHLIGHT_WIDTH; draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT); ds->started = TRUE; } /* * Now draw each tile. We do this in two passes to make * animation easy. */ for (pass = 0; pass < 2; pass++) { for (i = 0; i < state->n; i++) { int t, t0; /* * Figure out what should be displayed at this * location. It's either a simple tile, or it's a * transition between two tiles (in which case we say * -1 because it must always be drawn). */ if (oldstate && oldstate->tiles[i] != state->tiles[i]) t = -1; else t = state->tiles[i]; t0 = t; if (ds->bgcolour != bgcolour || /* always redraw when flashing */ ds->tiles[i] != t || ds->tiles[i] == -1 || t == -1) { int x, y; /* * Figure out what to _actually_ draw, and where to * draw it. */ if (t == -1) { int x0, y0, x1, y1; int j; /* * On the first pass, just blank the tile. */ if (pass == 0) { x = COORD(X(state, i)); y = COORD(Y(state, i)); t = 0; } else { float c; t = state->tiles[i]; /* * Don't bother moving the gap; just don't * draw it. */ if (t == 0) continue; /* * Find the coordinates of this tile in the old and * new states. */ x1 = COORD(X(state, i)); y1 = COORD(Y(state, i)); for (j = 0; j < oldstate->n; j++) if (oldstate->tiles[j] == state->tiles[i]) break; assert(j < oldstate->n); x0 = COORD(X(state, j)); y0 = COORD(Y(state, j)); c = (animtime / ANIM_TIME); if (c < 0.0F) c = 0.0F; if (c > 1.0F) c = 1.0F; x = x0 + (int)(c * (x1 - x0)); y = y0 + (int)(c * (y1 - y0)); } } else { if (pass == 0) continue; x = COORD(X(state, i)); y = COORD(Y(state, i)); } draw_tile(dr, ds, state, x, y, t, bgcolour); } ds->tiles[i] = t0; } } ds->bgcolour = bgcolour; /* * Update the status bar. */ { char statusbuf[256]; /* * Don't show the new status until we're also showing the * new _state_ - after the game animation is complete. */ if (oldstate) state = oldstate; if (state->used_solve) sprintf(statusbuf, "Moves since auto-solve: %d", state->movecount - state->completed); else sprintf(statusbuf, "%sMoves: %d", (state->completed ? "COMPLETED! " : ""), (state->completed ? state->completed : state->movecount)); status_bar(dr, statusbuf); } } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return ANIM_TIME; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->used_solve && !newstate->used_solve) return 2 * FLASH_FRAME; else return 0.0F; } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static int game_timing_state(const game_state *state, game_ui *ui) { return TRUE; } static void game_print_size(const game_params *params, float *x, float *y) { } static void game_print(drawing *dr, const game_state *state, int tilesize) { } #ifdef COMBINED #define thegame fifteen #endif const struct game thegame = { "Fifteen", "games.fifteen", "fifteen", default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, TRUE, solve_game, TRUE, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, game_changed_state, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_status, FALSE, FALSE, game_print_size, game_print, TRUE, /* wants_statusbar */ FALSE, game_timing_state, 0, /* flags */ }; #ifdef STANDALONE_SOLVER int main(int argc, char **argv) { game_params *params; game_state *state; char *id = NULL, *desc, *err; int grade = FALSE; char *progname = argv[0]; char buf[80]; int limit, x, y, solvable; while (--argc > 0) { char *p = *++argv; if (!strcmp(p, "-v")) { /* solver_show_working = TRUE; */ } else if (!strcmp(p, "-g")) { grade = TRUE; } else if (*p == '-') { fprintf(stderr, "%s: unrecognised option `%s'\n", progname, p); return 1; } else { id = p; } } if (!id) { fprintf(stderr, "usage: %s [-g | -v] \n", argv[0]); return 1; } desc = strchr(id, ':'); if (!desc) { fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]); return 1; } *desc++ = '\0'; params = default_params(); decode_params(params, id); err = validate_desc(params, desc); if (err) { free_params(params); fprintf(stderr, "%s: %s\n", argv[0], err); return 1; } state = new_game(NULL, params, desc); free_params(params); solvable = (PARITY_S(state) == perm_parity(state->tiles, state->n)); if (grade || !solvable) { free_game(state); fputs(solvable ? "Game is solvable" : "Game is unsolvable", grade ? stdout : stderr); return !grade; } for (limit = 5 * state->n * state->n * state->n; limit; --limit) { game_state *next_state; if (!compute_hint(state, &x, &y)) { fprintf(stderr, "couldn't compute next move while solving %s:%s", id, desc); return 1; } printf("Move the space to (%d, %d), moving %d into the space\n", x + 1, y + 1, state->tiles[C(state, x, y)]); sprintf(buf, "M%d,%d", x, y); next_state = execute_move(state, buf); free_game(state); if (!next_state) { fprintf(stderr, "invalid move when solving %s:%s\n", id, desc); return 1; } state = next_state; if (next_state->completed) { free_game(state); return 0; } } free_game(state); fprintf(stderr, "ran out of moves for %s:%s\n", id, desc); return 1; } #endif