/* * COOK compatible decoder * Copyright (c) 2003 Sascha Sommer * Copyright (c) 2005 Benjamin Larsson * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file cook.c * Cook compatible decoder. Bastardization of the G.722.1 standard. * This decoder handles RealNetworks, RealAudio G2 data. * Cook is identified by the codec name cook in RM files. * * To use this decoder, a calling application must supply the extradata * bytes provided from the RM container; 8+ bytes for mono streams and * 16+ for stereo streams (maybe more). * * Codec technicalities (all this assume a buffer length of 1024): * Cook works with several different techniques to achieve its compression. * In the timedomain the buffer is divided into 8 pieces and quantized. If * two neighboring pieces have different quantization index a smooth * quantization curve is used to get a smooth overlap between the different * pieces. * To get to the transformdomain Cook uses a modulated lapped transform. * The transform domain has 50 subbands with 20 elements each. This * means only a maximum of 50*20=1000 coefficients are used out of the 1024 * available. */ #include #include #include #include #include #include "codeclib.h" #include "cook.h" #include "cookdata.h" /* the different Cook versions */ #define MONO 0x1000001 #define STEREO 0x1000002 #define JOINT_STEREO 0x1000003 #define MC_COOK 0x2000000 //multichannel Cook, not supported #define SUBBAND_SIZE 20 #define MAX_SUBPACKETS 5 //#define COOKDEBUG #ifndef COOKDEBUG #undef DEBUGF #define DEBUGF(...) #endif /** * Random bit stream generator. */ static inline int cook_random(COOKContext *q) { q->random_state = q->random_state * 214013 + 2531011; /* typical RNG numbers */ return (q->random_state/0x1000000)&1; /*>>31*/ } #include "cook_fixpoint.h" /* debug functions */ #ifdef COOKDEBUG static void dump_int_table(int* table, int size, int delimiter) { int i=0; DEBUGF("\n[%d]: ",i); for (i=0 ; ienvelope_quant_index[i].table = vlcbuf[i]; q->envelope_quant_index[i].table_allocated = VLCBUFSIZE; result |= init_vlc (&q->envelope_quant_index[i], 9, 24, envelope_quant_index_huffbits[i], 1, 1, envelope_quant_index_huffcodes[i], 2, 2, INIT_VLC_USE_NEW_STATIC); } DEBUGF("sqvh VLC init\n"); for (i=0 ; i<7 ; i++) { q->sqvh[i].table = vlcbuf[i+13]; q->sqvh[i].table_allocated = VLCBUFSIZE; result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i], cvh_huffbits[i], 1, 1, cvh_huffcodes[i], 2, 2, INIT_VLC_USE_NEW_STATIC); } if (q->nb_channels==2 && q->joint_stereo==1){ q->ccpl.table = vlcbuf[20]; q->ccpl.table_allocated = VLCBUFSIZE; result |= init_vlc (&q->ccpl, 6, (1<js_vlc_bits)-1, ccpl_huffbits[q->js_vlc_bits-2], 1, 1, ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, INIT_VLC_USE_NEW_STATIC); DEBUGF("Joint-stereo VLC used.\n"); } DEBUGF("VLC tables initialized. Result = %d\n",result); return result; } /*************** init functions end ***********/ /** * Cook indata decoding, every 32 bits are XORed with 0x37c511f2. * Why? No idea, some checksum/error detection method maybe. * * Out buffer size: extra bytes are needed to cope with * padding/misalignment. * Subpackets passed to the decoder can contain two, consecutive * half-subpackets, of identical but arbitrary size. * 1234 1234 1234 1234 extraA extraB * Case 1: AAAA BBBB 0 0 * Case 2: AAAA ABBB BB-- 3 3 * Case 3: AAAA AABB BBBB 2 2 * Case 4: AAAA AAAB BBBB BB-- 1 5 * * Nice way to waste CPU cycles. * * @param inbuffer pointer to byte array of indata * @param out pointer to byte array of outdata * @param bytes number of bytes */ #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4) #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){ int i, off; uint32_t c; const uint32_t* buf; uint32_t* obuf = (uint32_t*) out; /* FIXME: 64 bit platforms would be able to do 64 bits at a time. * I'm too lazy though, should be something like * for(i=0 ; i> (off*8)) | (0x37c511f2 << (32-(off*8)))); bytes += 3 + off; for (i = 0; i < bytes/4; i++) obuf[i] = c ^ buf[i]; return off; } /** * Fill the gain array for the timedomain quantization. * * @param q pointer to the COOKContext * @param gaininfo[9] array of gain indexes */ static void decode_gain_info(GetBitContext *gb, int *gaininfo) { int i, n; while (get_bits1(gb)) {} n = get_bits_count(gb) - 1; //amount of elements*2 to update i = 0; while (n--) { int index = get_bits(gb, 3); int gain = get_bits1(gb) ? (int)get_bits(gb, 4) - 7 : -1; while (i <= index) gaininfo[i++] = gain; } while (i <= 8) gaininfo[i++] = 0; } /** * Create the quant index table needed for the envelope. * * @param q pointer to the COOKContext * @param quant_index_table pointer to the array */ static void decode_envelope(COOKContext *q, int* quant_index_table) { int i,j, vlc_index; quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize for (i=1 ; i < q->total_subbands ; i++){ vlc_index=i; if (i >= q->js_subband_start * 2) { vlc_index-=q->js_subband_start; } else { vlc_index/=2; if(vlc_index < 1) vlc_index = 1; } if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table, q->envelope_quant_index[vlc_index-1].bits,2); quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding } } /** * Calculate the category and category_index vector. * * @param q pointer to the COOKContext * @param quant_index_table pointer to the array * @param category pointer to the category array * @param category_index pointer to the category_index array */ static void categorize(COOKContext *q, int* quant_index_table, int* category, int* category_index){ int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j; int exp_index2[102]; int exp_index1[102]; int tmp_categorize_array[128*2]; int tmp_categorize_array1_idx=q->numvector_size; int tmp_categorize_array2_idx=q->numvector_size; bits_left = q->bits_per_subpacket - get_bits_count(&q->gb); if(bits_left > q->samples_per_channel) { bits_left = q->samples_per_channel + ((bits_left - q->samples_per_channel)*5)/8; //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left); } memset(&exp_index1,0,102*sizeof(int)); memset(&exp_index2,0,102*sizeof(int)); memset(&tmp_categorize_array,0,128*2*sizeof(int)); bias=-32; /* Estimate bias. */ for (i=32 ; i>0 ; i=i/2){ num_bits = 0; index = 0; for (j=q->total_subbands ; j>0 ; j--){ exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7); index++; num_bits+=expbits_tab[exp_idx]; } if(num_bits >= bits_left - 32){ bias+=i; } } /* Calculate total number of bits. */ num_bits=0; for (i=0 ; itotal_subbands ; i++) { exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7); num_bits += expbits_tab[exp_idx]; exp_index1[i] = exp_idx; exp_index2[i] = exp_idx; } tmpbias1 = tmpbias2 = num_bits; for (j = 1 ; j < q->numvector_size ; j++) { if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */ int max = -999999; index=-1; for (i=0 ; itotal_subbands ; i++){ if (exp_index1[i] < 7) { v = (-2*exp_index1[i]) - quant_index_table[i] + bias; if ( v >= max) { max = v; index = i; } } } if(index==-1)break; tmp_categorize_array[tmp_categorize_array1_idx++] = index; tmpbias1 -= expbits_tab[exp_index1[index]] - expbits_tab[exp_index1[index]+1]; ++exp_index1[index]; } else { /* <--- */ int min = 999999; index=-1; for (i=0 ; itotal_subbands ; i++){ if(exp_index2[i] > 0){ v = (-2*exp_index2[i])-quant_index_table[i]+bias; if ( v < min) { min = v; index = i; } } } if(index == -1)break; tmp_categorize_array[--tmp_categorize_array2_idx] = index; tmpbias2 -= expbits_tab[exp_index2[index]] - expbits_tab[exp_index2[index]-1]; --exp_index2[index]; } } memcpy(category, exp_index2, sizeof(int) * q->total_subbands ); memcpy(category_index, tmp_categorize_array+tmp_categorize_array2_idx, sizeof(int) * (q->numvector_size-1) ); } /** * Expand the category vector. * * @param q pointer to the COOKContext * @param category pointer to the category array * @param category_index pointer to the category_index array */ static inline void expand_category(COOKContext *q, int* category, int* category_index){ int i; for(i=0 ; inum_vectors ; i++){ ++category[category_index[i]]; } } /** * Unpack the subband_coef_index and subband_coef_sign vectors. * * @param q pointer to the COOKContext * @param category pointer to the category array * @param subband_coef_index array of indexes to quant_centroid_tab * @param subband_coef_sign signs of coefficients */ static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index, int* subband_coef_sign) { int i,j; int vlc, vd ,tmp, result; vd = vd_tab[category]; result = 0; for(i=0 ; igb, q->sqvh[category].table, q->sqvh[category].bits, 3); if (q->bits_per_subpacket < get_bits_count(&q->gb)) { vlc = 0; result = 1; memset(subband_coef_index, 0, sizeof(int)*vd); memset(subband_coef_sign, 0, sizeof(int)*vd); subband_coef_index+=vd; subband_coef_sign+=vd; } else { for(j=vd-1 ; j>=0 ; j--){ tmp = (vlc * invradix_tab[category])/0x100000; subband_coef_index[j] = vlc - tmp * (kmax_tab[category]+1); vlc = tmp; } for(j=0 ; jgb) < q->bits_per_subpacket) { *subband_coef_sign++ = get_bits1(&q->gb); } else { result=1; *subband_coef_sign++=0; } } else { *subband_coef_sign++=0; } } } } return result; } /** * Fill the mlt_buffer with mlt coefficients. * * @param q pointer to the COOKContext * @param category pointer to the category array * @param quant_index_table pointer to the array * @param mlt_buffer pointer to mlt coefficients */ static void decode_vectors(COOKContext* q, int* category, int *quant_index_table, REAL_T* mlt_buffer){ /* A zero in this table means that the subband coefficient is random noise coded. */ int subband_coef_index[SUBBAND_SIZE]; /* A zero in this table means that the subband coefficient is a positive multiplicator. */ int subband_coef_sign[SUBBAND_SIZE]; int band, j; int index=0; for(band=0 ; bandtotal_subbands ; band++){ index = category[band]; if(category[band] < 7){ if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){ index=7; for(j=0 ; jtotal_subbands ; j++) category[band+j]=7; } } if(index>=7) { memset(subband_coef_index, 0, sizeof(subband_coef_index)); memset(subband_coef_sign, 0, sizeof(subband_coef_sign)); } q->scalar_dequant(q, index, quant_index_table[band], subband_coef_index, subband_coef_sign, &mlt_buffer[band * SUBBAND_SIZE]); } if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){ return; } /* FIXME: should this be removed, or moved into loop above? */ } /** * function for decoding mono data * * @param q pointer to the COOKContext * @param mlt_buffer pointer to mlt coefficients */ static void mono_decode(COOKContext *q, REAL_T* mlt_buffer) { int category_index[128]; int quant_index_table[102]; int category[128]; memset(&category, 0, 128*sizeof(int)); memset(&category_index, 0, 128*sizeof(int)); decode_envelope(q, quant_index_table); q->num_vectors = get_bits(&q->gb,q->log2_numvector_size); categorize(q, quant_index_table, category, category_index); expand_category(q, category, category_index); decode_vectors(q, category, quant_index_table, mlt_buffer); } /** * function for getting the jointstereo coupling information * * @param q pointer to the COOKContext * @param decouple_tab decoupling array * */ static void decouple_info(COOKContext *q, int* decouple_tab){ int length, i; if(get_bits1(&q->gb)) { if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return; length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1; for (i=0 ; ijs_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2); } return; } if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return; length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1; for (i=0 ; ijs_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits); } return; } /** * function for decoding joint stereo data * * @param q pointer to the COOKContext * @param mlt_buffer1 pointer to left channel mlt coefficients * @param mlt_buffer2 pointer to right channel mlt coefficients */ static void joint_decode(COOKContext *q, REAL_T* mlt_buffer1, REAL_T* mlt_buffer2) { int i; int decouple_tab[SUBBAND_SIZE]; REAL_T *decode_buffer = q->decode_buffer_0; int idx; memset(decouple_tab, 0, sizeof(decouple_tab)); memset(decode_buffer, 0, sizeof(decode_buffer)); /* Make sure the buffers are zeroed out. */ memset(mlt_buffer1,0, 1024*sizeof(REAL_T)); memset(mlt_buffer2,0, 1024*sizeof(REAL_T)); decouple_info(q, decouple_tab); mono_decode(q, decode_buffer); /* The two channels are stored interleaved in decode_buffer. */ REAL_T * mlt_buffer1_end = mlt_buffer1 + (q->js_subband_start*SUBBAND_SIZE); while(mlt_buffer1 < mlt_buffer1_end) { memcpy(mlt_buffer1,decode_buffer,sizeof(REAL_T)*SUBBAND_SIZE); memcpy(mlt_buffer2,decode_buffer+20,sizeof(REAL_T)*SUBBAND_SIZE); mlt_buffer1 += 20; mlt_buffer2 += 20; decode_buffer += 40; } /* When we reach js_subband_start (the higher frequencies) the coefficients are stored in a coupling scheme. */ idx = (1 << q->js_vlc_bits) - 1; for (i=q->js_subband_start ; isubbands ; i++) { int i1 = decouple_tab[cplband[i]]; int i2 = idx - i1 - 1; mlt_buffer1_end = mlt_buffer1 + SUBBAND_SIZE; while(mlt_buffer1 < mlt_buffer1_end) { *mlt_buffer1++ = cplscale_math(*decode_buffer, q->js_vlc_bits, i1); *mlt_buffer2++ = cplscale_math(*decode_buffer++, q->js_vlc_bits, i2); } mlt_buffer1 += (20-SUBBAND_SIZE); mlt_buffer2 += (20-SUBBAND_SIZE); decode_buffer += (20-SUBBAND_SIZE); } } /** * First part of subpacket decoding: * decode raw stream bytes and read gain info. * * @param q pointer to the COOKContext * @param inbuffer pointer to raw stream data * @param gain_ptr array of current/prev gain pointers */ #define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0) static inline void decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer, cook_gains *gains_ptr) { int offset; offset = decode_bytes(inbuffer, q->decoded_bytes_buffer, q->bits_per_subpacket/8); init_get_bits(&q->gb, q->decoded_bytes_buffer + offset, q->bits_per_subpacket); decode_gain_info(&q->gb, gains_ptr->now); /* Swap current and previous gains */ FFSWAP(int *, gains_ptr->now, gains_ptr->previous); } /** * Final part of subpacket decoding: * Apply modulated lapped transform, gain compensation, * clip and convert to integer. * * @param q pointer to the COOKContext * @param decode_buffer pointer to the mlt coefficients * @param gain_ptr array of current/prev gain pointers * @param previous_buffer pointer to the previous buffer to be used for overlapping * @param out pointer to the output buffer * @param chan 0: left or single channel, 1: right channel */ static void mlt_compensate_output(COOKContext *q, REAL_T *decode_buffer, cook_gains *gains, REAL_T *previous_buffer, int32_t *out, int chan) { REAL_T *buffer = q->mono_mdct_output; int i; imlt_math(q, decode_buffer); /* Overlap with the previous block. */ overlap_math(q, gains->previous[0], previous_buffer); /* Apply gain profile */ for (i = 0; i < 8; i++) { if (gains->now[i] || gains->now[i + 1]) interpolate_math(q, &buffer[q->samples_per_channel/8 * i], gains->now[i], gains->now[i + 1]); } /* Save away the current to be previous block. */ memcpy(previous_buffer, buffer+q->samples_per_channel, sizeof(REAL_T)*q->samples_per_channel); /* Copy output to non-interleaved sample buffer */ memcpy(out + (chan * q->samples_per_channel), buffer, sizeof(REAL_T)*q->samples_per_channel); } /** * Cook subpacket decoding. This function returns one decoded subpacket, * usually 1024 samples per channel. * * @param q pointer to the COOKContext * @param inbuffer pointer to the inbuffer * @param sub_packet_size subpacket size * @param outbuffer pointer to the outbuffer */ static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer, int sub_packet_size, int32_t *outbuffer) { /* packet dump */ // for (i=0 ; igains1); if (q->joint_stereo) { joint_decode(q, q->decode_buffer_1, q->decode_buffer_2); } else { mono_decode(q, q->decode_buffer_1); if (q->nb_channels == 2) { decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2); mono_decode(q, q->decode_buffer_2); } } mlt_compensate_output(q, q->decode_buffer_1, &q->gains1, q->mono_previous_buffer1, outbuffer, 0); if (q->nb_channels == 2) { if (q->joint_stereo) { mlt_compensate_output(q, q->decode_buffer_2, &q->gains1, q->mono_previous_buffer2, outbuffer, 1); } else { mlt_compensate_output(q, q->decode_buffer_2, &q->gains2, q->mono_previous_buffer2, outbuffer, 1); } } return q->samples_per_frame * sizeof(int32_t); } /** * Cook frame decoding * * @param rmctx pointer to the RMContext */ int cook_decode_frame(RMContext *rmctx,COOKContext *q, int32_t *outbuffer, int *data_size, const uint8_t *inbuffer, int buf_size) { //COOKContext *q = avctx->priv_data; //COOKContext *q; if (buf_size < rmctx->block_align) return buf_size; *data_size = decode_subpacket(q, inbuffer, rmctx->block_align, outbuffer); /* Discard the first two frames: no valid audio. */ if (rmctx->frame_number < 2) *data_size = 0; return rmctx->block_align; } #ifdef COOKDEBUG static void dump_cook_context(COOKContext *q) { //int i=0; #define PRINT(a,b) DEBUGF(" %s = %d\n", a, b); DEBUGF("COOKextradata\n"); DEBUGF("cookversion=%x\n",q->cookversion); if (q->cookversion > STEREO) { PRINT("js_subband_start",q->js_subband_start); PRINT("js_vlc_bits",q->js_vlc_bits); } PRINT("nb_channels",q->nb_channels); PRINT("bit_rate",q->bit_rate); PRINT("sample_rate",q->sample_rate); PRINT("samples_per_channel",q->samples_per_channel); PRINT("samples_per_frame",q->samples_per_frame); PRINT("subbands",q->subbands); PRINT("random_state",q->random_state); PRINT("js_subband_start",q->js_subband_start); PRINT("log2_numvector_size",q->log2_numvector_size); PRINT("numvector_size",q->numvector_size); PRINT("total_subbands",q->total_subbands); } #endif /** * Cook initialization */ int cook_decode_init(RMContext *rmctx, COOKContext *q) { #if defined(CPU_COLDFIRE) coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE); #endif /* cook extradata */ q->cookversion = rm_get_uint32be(rmctx->codec_extradata); q->samples_per_frame = rm_get_uint16be(&rmctx->codec_extradata[4]); q->subbands = rm_get_uint16be(&rmctx->codec_extradata[6]); q->extradata_size = rmctx->extradata_size; if (q->extradata_size >= 16){ q->js_subband_start = rm_get_uint16be(&rmctx->codec_extradata[12]); q->js_vlc_bits = rm_get_uint16be(&rmctx->codec_extradata[14]); } /* Take data from the RMContext (RM container). */ q->sample_rate = rmctx->sample_rate; q->nb_channels = rmctx->nb_channels; q->bit_rate = rmctx->bit_rate; /* Initialize RNG. */ q->random_state = 0; /* Initialize extradata related variables. */ q->samples_per_channel = q->samples_per_frame >> (q->nb_channels-1); q->bits_per_subpacket = rmctx->block_align * 8; /* Initialize default data states. */ q->log2_numvector_size = 5; q->total_subbands = q->subbands; /* Initialize version-dependent variables */ DEBUGF("q->cookversion=%x\n",q->cookversion); q->joint_stereo = 0; switch (q->cookversion) { case MONO: if (q->nb_channels != 1) { DEBUGF("Container channels != 1, report sample!\n"); return -1; } DEBUGF("MONO\n"); break; case STEREO: if (q->nb_channels != 1) { q->bits_per_subpacket = q->bits_per_subpacket/2; } DEBUGF("STEREO\n"); break; case JOINT_STEREO: if (q->nb_channels != 2) { DEBUGF("Container channels != 2, report sample!\n"); return -1; } DEBUGF("JOINT_STEREO\n"); if (q->extradata_size >= 16){ q->total_subbands = q->subbands + q->js_subband_start; q->joint_stereo = 1; } if (q->samples_per_channel > 256) { q->log2_numvector_size = 6; } if (q->samples_per_channel > 512) { q->log2_numvector_size = 7; } break; case MC_COOK: DEBUGF("MC_COOK not supported!\n"); return -1; break; default: DEBUGF("Unknown Cook version, report sample!\n"); return -1; break; } /* Initialize variable relations */ q->numvector_size = (1 << q->log2_numvector_size); q->mdct_nbits = av_log2(q->samples_per_channel)+1; /* Generate tables */ if (init_cook_vlc_tables(q) != 0) return -1; if(rmctx->block_align >= UINT16_MAX/2) return -1; q->gains1.now = q->gain_1; q->gains1.previous = q->gain_2; q->gains2.now = q->gain_3; q->gains2.previous = q->gain_4; /* Initialize COOK signal arithmetic handling */ if (1) { q->scalar_dequant = scalar_dequant_math; q->interpolate = interpolate_math; } /* Try to catch some obviously faulty streams, othervise it might be exploitable */ if (q->total_subbands > 53) { DEBUGF("total_subbands > 53, report sample!\n"); return -1; } if (q->subbands > 50) { DEBUGF("subbands > 50, report sample!\n"); return -1; } if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) { } else { DEBUGF("unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel); return -1; } if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) { DEBUGF("q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits); return -1; } #ifdef COOKDEBUG dump_cook_context(q); #endif return 0; }