/* * imdct.c * Copyright (C) 2000-2003 Michel Lespinasse * Copyright (C) 1999-2000 Aaron Holtzman * * The ifft algorithms in this file have been largely inspired by Dan * Bernstein's work, djbfft, available at http://cr.yp.to/djbfft.html * * This file is part of a52dec, a free ATSC A-52 stream decoder. * See http://liba52.sourceforge.net/ for updates. * * a52dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * a52dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config-a52.h" #include #include #ifdef LIBA52_DJBFFT #include #include #endif #ifndef M_PI #define M_PI 3.1415926535897932384626433832795029 #endif #include #include "a52.h" #include "a52_internal.h" #include "mm_accel.h" typedef struct complex_s { sample_t real; sample_t imag; } complex_t; static const uint8_t fftorder[] = { 0,128, 64,192, 32,160,224, 96, 16,144, 80,208,240,112, 48,176, 8,136, 72,200, 40,168,232,104,248,120, 56,184, 24,152,216, 88, 4,132, 68,196, 36,164,228,100, 20,148, 84,212,244,116, 52,180, 252,124, 60,188, 28,156,220, 92, 12,140, 76,204,236,108, 44,172, 2,130, 66,194, 34,162,226, 98, 18,146, 82,210,242,114, 50,178, 10,138, 74,202, 42,170,234,106,250,122, 58,186, 26,154,218, 90, 254,126, 62,190, 30,158,222, 94, 14,142, 78,206,238,110, 46,174, 6,134, 70,198, 38,166,230,102,246,118, 54,182, 22,150,214, 86 }; /* Root values for IFFT */ //static sample_t roots16[3]; //static sample_t roots32[7]; //static sample_t roots64[15]; //static sample_t roots128[31]; /* Twiddle factors for IMDCT */ //static complex_t pre1[128]; //static complex_t post1[64]; //static complex_t pre2[64]; //static complex_t post2[32]; //static sample_t a52_imdct_window[256]; #include "imdct_lookups.h" /* static void (* ifft128) (complex_t * buf); static void (* ifft64) (complex_t * buf); static inline void ifft2 (complex_t * buf) { sample_t r, i; r = buf[0].real; i = buf[0].imag; buf[0].real += buf[1].real; buf[0].imag += buf[1].imag; buf[1].real = r - buf[1].real; buf[1].imag = i - buf[1].imag; } static inline void ifft4 (complex_t * buf) { sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; tmp1 = buf[0].real + buf[1].real; tmp2 = buf[3].real + buf[2].real; tmp3 = buf[0].imag + buf[1].imag; tmp4 = buf[2].imag + buf[3].imag; tmp5 = buf[0].real - buf[1].real; tmp6 = buf[0].imag - buf[1].imag; tmp7 = buf[2].imag - buf[3].imag; tmp8 = buf[3].real - buf[2].real; buf[0].real = tmp1 + tmp2; buf[0].imag = tmp3 + tmp4; buf[2].real = tmp1 - tmp2; buf[2].imag = tmp3 - tmp4; buf[1].real = tmp5 + tmp7; buf[1].imag = tmp6 + tmp8; buf[3].real = tmp5 - tmp7; buf[3].imag = tmp6 - tmp8; } */ /* basic radix-2 ifft butterfly */ #define BUTTERFLY_0(t0,t1,W0,W1,d0,d1) do { \ t0 = MUL (W1, d1) + MUL (W0, d0); \ t1 = MUL (W0, d1) - MUL (W1, d0); \ } while (0) /* radix-2 ifft butterfly with bias */ #define BUTTERFLY_B(t0,t1,W0,W1,d0,d1) do { \ t0 = BIAS (MUL (d1, W1) + MUL (d0, W0)); \ t1 = BIAS (MUL (d1, W0) - MUL (d0, W1)); \ } while (0) /* the basic split-radix ifft butterfly */ #define BUTTERFLY(a0,a1,a2,a3,wr,wi) do { \ BUTTERFLY_0 (tmp5, tmp6, wr, wi, a2.real, a2.imag); \ BUTTERFLY_0 (tmp8, tmp7, wr, wi, a3.imag, a3.real); \ tmp1 = tmp5 + tmp7; \ tmp2 = tmp6 + tmp8; \ tmp3 = tmp6 - tmp8; \ tmp4 = tmp7 - tmp5; \ a2.real = a0.real - tmp1; \ a2.imag = a0.imag - tmp2; \ a3.real = a1.real - tmp3; \ a3.imag = a1.imag - tmp4; \ a0.real += tmp1; \ a0.imag += tmp2; \ a1.real += tmp3; \ a1.imag += tmp4; \ } while (0) /* split-radix ifft butterfly, specialized for wr=1 wi=0 */ #define BUTTERFLY_ZERO(a0,a1,a2,a3) do { \ tmp1 = a2.real + a3.real; \ tmp2 = a2.imag + a3.imag; \ tmp3 = a2.imag - a3.imag; \ tmp4 = a3.real - a2.real; \ a2.real = a0.real - tmp1; \ a2.imag = a0.imag - tmp2; \ a3.real = a1.real - tmp3; \ a3.imag = a1.imag - tmp4; \ a0.real += tmp1; \ a0.imag += tmp2; \ a1.real += tmp3; \ a1.imag += tmp4; \ } while (0) /* split-radix ifft butterfly, specialized for wr=wi */ /* #define BUTTERFLY_HALF(a0,a1,a2,a3,w) do { \ tmp5 = MUL (a2.real + a2.imag, w); \ tmp6 = MUL (a2.imag - a2.real, w); \ tmp7 = MUL (a3.real - a3.imag, w); \ tmp8 = MUL (a3.imag + a3.real, w); \ tmp1 = tmp5 + tmp7; \ tmp2 = tmp6 + tmp8; \ tmp3 = tmp6 - tmp8; \ tmp4 = tmp7 - tmp5; \ a2.real = a0.real - tmp1; \ a2.imag = a0.imag - tmp2; \ a3.real = a1.real - tmp3; \ a3.imag = a1.imag - tmp4; \ a0.real += tmp1; \ a0.imag += tmp2; \ a1.real += tmp3; \ a1.imag += tmp4; \ } while (0) static inline void ifft8 (complex_t * buf) { sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; ifft4 (buf); ifft2 (buf + 4); ifft2 (buf + 6); BUTTERFLY_ZERO (buf[0], buf[2], buf[4], buf[6]); BUTTERFLY_HALF (buf[1], buf[3], buf[5], buf[7], roots16[1]); } static void ifft_pass (complex_t * buf, const sample_t * weight, int n) { complex_t * buf1; complex_t * buf2; complex_t * buf3; sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; int i; buf++; buf1 = buf + n; buf2 = buf + 2 * n; buf3 = buf + 3 * n; BUTTERFLY_ZERO (buf[-1], buf1[-1], buf2[-1], buf3[-1]); i = n - 1; do { BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0], weight[0], weight[2*i-n]); buf++; buf1++; buf2++; buf3++; weight++; } while (--i); } static void ifft16 (complex_t * buf) { ifft8 (buf); ifft4 (buf + 8); ifft4 (buf + 12); ifft_pass (buf, roots16, 4); } static void ifft32 (complex_t * buf) { ifft16 (buf); ifft8 (buf + 16); ifft8 (buf + 24); ifft_pass (buf, roots32, 8); } static void ifft64_c (complex_t * buf) { ifft32 (buf); ifft16 (buf + 32); ifft16 (buf + 48); ifft_pass (buf, roots64, 16); } static void ifft128_c (complex_t * buf) { ifft32 (buf); ifft16 (buf + 32); ifft16 (buf + 48); ifft_pass (buf, roots64, 16); ifft32 (buf + 64); ifft32 (buf + 96); ifft_pass (buf, roots128, 32); } */ void a52_imdct_512 (sample_t * data, sample_t * delay) { int i, k; sample_t t_r, t_i, a_r, a_i, b_r, b_i, w_1, w_2; const sample_t * window = a52_imdct_window; FFTComplex buf[128]; for (i = 0; i < 128; i++) { k = fftorder[i]; t_r = pre1[i].real; t_i = pre1[i].imag; BUTTERFLY_0 (buf[i].re, buf[i].im, t_r, t_i, data[k], data[255-k]); } //ifft128 (buf); ff_fft_calc_c(7, (FFTComplex *)&buf); /* Post IFFT complex multiply plus IFFT complex conjugate*/ /* Window and convert to real valued signal */ for (i = 0; i < 64; i++) { /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */ t_r = post1[i].real; t_i = post1[i].imag; BUTTERFLY_0 (a_r, a_i, t_i, t_r, buf[i].im, buf[i].re); BUTTERFLY_0 (b_r, b_i, t_r, t_i, buf[127-i].im, buf[127-i].re); w_1 = window[2*i]; w_2 = window[255-2*i]; BUTTERFLY_B (data[255-2*i], data[2*i], w_2, w_1, a_r, delay[2*i]); delay[2*i] = a_i; w_1 = window[2*i+1]; w_2 = window[254-2*i]; BUTTERFLY_B (data[2*i+1], data[254-2*i], w_1, w_2, b_r, delay[2*i+1]); delay[2*i+1] = b_i; } } void a52_imdct_256 (sample_t * data, sample_t * delay) { int i, k; sample_t t_r, t_i, a_r, a_i, b_r, b_i, c_r, c_i, d_r, d_i, w_1, w_2; const sample_t * window = a52_imdct_window; FFTComplex buf1[64], buf2[64]; /* Pre IFFT complex multiply plus IFFT cmplx conjugate */ for (i = 0; i < 64; i++) { k = fftorder[i]; t_r = pre2[i].real; t_i = pre2[i].imag; BUTTERFLY_0 (buf1[i].re, buf1[i].im, t_r, t_i, data[k], data[254-k]); BUTTERFLY_0 (buf2[i].re, buf2[i].im, t_r, t_i, data[k+1], data[255-k]); } //ifft64 (buf1); //ifft64 (buf2); ff_fft_calc_c(6, (FFTComplex *)&buf1); ff_fft_calc_c(6, (FFTComplex *)&buf2); /* Post IFFT complex multiply */ /* Window and convert to real valued signal */ for (i = 0; i < 32; i++) { /* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */ t_r = post2[i].real; t_i = post2[i].imag; BUTTERFLY_0 (a_r, a_i, t_i, t_r, buf1[i].im, buf1[i].re); BUTTERFLY_0 (b_r, b_i, t_r, t_i, buf1[63-i].im, buf1[63-i].re); BUTTERFLY_0 (c_r, c_i, t_i, t_r, buf2[i].im, buf2[i].re); BUTTERFLY_0 (d_r, d_i, t_r, t_i, buf2[63-i].im, buf2[63-i].re); w_1 = window[2*i]; w_2 = window[255-2*i]; BUTTERFLY_B (data[255-2*i], data[2*i], w_2, w_1, a_r, delay[2*i]); delay[2*i] = c_i; w_1 = window[128+2*i]; w_2 = window[127-2*i]; BUTTERFLY_B (data[128+2*i], data[127-2*i], w_1, w_2, a_i, delay[127-2*i]); delay[127-2*i] = c_r; w_1 = window[2*i+1]; w_2 = window[254-2*i]; BUTTERFLY_B (data[254-2*i], data[2*i+1], w_2, w_1, b_i, delay[2*i+1]); delay[2*i+1] = d_r; w_1 = window[129+2*i]; w_2 = window[126-2*i]; BUTTERFLY_B (data[129+2*i], data[126-2*i], w_1, w_2, b_r, delay[126-2*i]); delay[126-2*i] = d_i; } } /* static double besselI0 (double x) { double bessel = 1; int i = 100; do bessel = bessel * x / (i * i) + 1; while (--i); return bessel; } */ void a52_imdct_init (uint32_t mm_accel) { (void)mm_accel; //ff_fft_init(&s128, 7, 1); //ff_fft_init(&s64, 6, 1); /* int i, k; double sum; double local_imdct_window[256];*/ /* compute imdct window - kaiser-bessel derived window, alpha = 5.0 */ /* sum = 0; for (i = 0; i < 256; i++) { sum += besselI0 (i * (256 - i) * (5 * M_PI / 256) * (5 * M_PI / 256)); local_imdct_window[i] = sum; } sum++; */ /* for (i = 0; i < 256; i++) a52_imdct_window[i] = SAMPLE (sqrt (local_imdct_window[i] / sum)); printf("static sample_t a52_imdct_window[256]={"); for (i=0;i<256;i++) { if ((i % 16)==0) { printf("\n"); } printf("%d,",a52_imdct_window[i]); } printf("\n}\n"); */ /* for (i = 0; i < 3; i++) roots16[i] = SAMPLE (cos ((M_PI / 8) * (i + 1))); printf("static sample_t roots16[3]={%d,%d,%d};\n\n",roots16[0],roots16[1],roots16[2]); for (i = 0; i < 7; i++) roots32[i] = SAMPLE (cos ((M_PI / 16) * (i + 1))); printf("static sample_t roots32[7]={"); for (i=0;i<7;i++) { printf("%d%s",roots32[i],(i < 6 ? "," : "")); } printf("};\n"); for (i = 0; i < 15; i++) roots64[i] = SAMPLE (cos ((M_PI / 32) * (i + 1))); printf("static sample_t roots64[15]={"); for (i=0;i<15;i++) { printf("%d%s",roots64[i],(i < 14 ? "," : "")); } printf("};\n"); for (i = 0; i < 31; i++) roots128[i] = SAMPLE (cos ((M_PI / 64) * (i + 1))); printf("static sample_t roots128[31]={"); for (i=0;i<31;i++) { printf("%d%s",roots128[i],(i < 30 ? "," : "")); } printf("};\n"); */ /* for (i = 0; i < 64; i++) { k = fftorder[i] / 2 + 64; pre1[i].real = SAMPLE (cos ((M_PI / 256) * (k - 0.25))); pre1[i].imag = SAMPLE (sin ((M_PI / 256) * (k - 0.25))); } for (i = 64; i < 128; i++) { k = fftorder[i] / 2 + 64; pre1[i].real = SAMPLE (-cos ((M_PI / 256) * (k - 0.25))); pre1[i].imag = SAMPLE (-sin ((M_PI / 256) * (k - 0.25))); } printf("static complex_t pre1[128]={"); for (i=0;i<128;i++) { printf("{%d,%d}%s",pre1[i].real,pre1[i].imag,(i < 127 ? "," : "")); } printf("};\n"); */ /* for (i = 0; i < 64; i++) { post1[i].real = SAMPLE (cos ((M_PI / 256) * (i + 0.5))); post1[i].imag = SAMPLE (sin ((M_PI / 256) * (i + 0.5))); } printf("static complex_t post1[64]={"); for (i=0;i<64;i++) { printf("{%d,%d}%s",post1[i].real,post1[i].imag,(i < 63 ? "," : "")); } printf("};\n"); */ /* for (i = 0; i < 64; i++) { k = fftorder[i] / 4; pre2[i].real = SAMPLE (cos ((M_PI / 128) * (k - 0.25))); pre2[i].imag = SAMPLE (sin ((M_PI / 128) * (k - 0.25))); } printf("static complex_t pre2[64]={"); for (i=0;i<64;i++) { printf("{%d,%d}%s",pre2[i].real,pre2[i].imag,(i < 63 ? "," : "")); } printf("};\n"); for (i = 0; i < 32; i++) { post2[i].real = SAMPLE (cos ((M_PI / 128) * (i + 0.5))); post2[i].imag = SAMPLE (sin ((M_PI / 128) * (i + 0.5))); } printf("static complex_t post2[32]={"); for (i=0;i<32;i++) { printf("{%d,%d}%s",post2[i].real,post2[i].imag,(i < 31 ? "," : "")); } printf("};\n"); #ifdef LIBA52_DJBFFT if (mm_accel & MM_ACCEL_DJBFFT) { #ifndef LIBA52_DOUBLE ifft128 = (void (*) (complex_t *)) fftc4_un128; ifft64 = (void (*) (complex_t *)) fftc4_un64; #else ifft128 = (void (*) (complex_t *)) fftc8_un128; ifft64 = (void (*) (complex_t *)) fftc8_un64; #endif } else #endif { ifft128 = ifft128_c; ifft64 = ifft64_c; } */ }