/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Jens Arnold * Copyright (C) 2009 by Andrew Mahone * * Optimised unsigned integer division for ARMv4 * * Based on: libgcc routines for ARM cpu, additional algorithms from ARM System * Developer's Guide * Division routines, written by Richard Earnshaw, (rearnsha@armltd.co.uk) * Copyright 1995, 1996, 1998, 1999, 2000, 2003, 2004, 2005 * Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" /* On targets with codec iram, a header file will be generated after an initial link of the APE codec, stating the amount of IRAM remaining for use by the reciprocal lookup table. */ #if !defined(APE_PRE) && defined(USE_IRAM) && ARM_ARCH < 5 #include "apps/codecs/ape_free_iram.h" #endif /* Codecs should not normally do this, but we need to check a macro, and * codecs.h would confuse the assembler. */ #ifdef USE_IRAM #define DIV_RECIP .section .icode,"ax",%progbits #else .text #endif .align .global udiv32_arm .type udiv32_arm,%function #if ARM_ARCH < 5 /* Adapted from an algorithm given in ARM System Developer's Guide (7.3.1.2) for dividing a 30-bit value by a 15-bit value, with two operations per iteration by storing quotient and remainder together and adding the previous quotient bit during trial subtraction. Modified to work with any dividend and divisor both less than 1 << 30, and skipping trials by calculating bits in output. */ .macro ARM_DIV_31_BODY dividend, divisor, result, bits, curbit, quotient, remainder mov \bits, #1 /* Shift the divisor left until it aligns with the numerator. If it already has the high bit set, this is fine, everything inside .rept will be skipped, and the add before and adcs after will set the one-bit result to zero. */ cmn \divisor, \dividend, lsr #16 movcs \divisor, \divisor, lsl #16 addcs \bits, \bits, #16 cmn \divisor, \dividend, lsr #8 movcs \divisor, \divisor, lsl #8 addcs \bits, \bits, #8 cmn \divisor, \dividend, lsr #4 movcs \divisor, \divisor, lsl #4 addcs \bits, \bits, #4 cmn \divisor, \dividend, lsr #2 movcs \divisor, \divisor, lsl #2 addcs \bits, \bits, #2 cmn \divisor, \dividend, lsr #1 movcs \divisor, \divisor, lsl #1 addcs \bits, \bits, #1 adds \result, \dividend, \divisor subcc \result, \result, \divisor rsb \curbit, \bits, #31 add pc, pc, \curbit, lsl #3 nop .rept 30 adcs \result, \divisor, \result, lsl #1 /* Fix the remainder portion of the result. This must be done because the handler for 32-bit numerators needs the remainder. */ subcc \result, \result, \divisor .endr /* Shift remainder/quotient left one, add final quotient bit */ adc \result, \result, \result mov \remainder, \result, lsr \bits eor \quotient, \result, \remainder, lsl \bits .endm #ifndef FREE_IRAM .set recip_max, 2 #else /* Each table entry is one word. Since a compare is done against the maximum entry as an immediate, the maximum entry must be a valid ARM immediate, which means a byte shifted by an even number of places. */ .set recip_max, 2 + FREE_IRAM / 4 .set recip_max_tmp, recip_max >> 8 .set recip_mask_shift, 0 .set tmp_shift, 16 .rept 5 .if recip_max_tmp >> tmp_shift .set recip_max_tmp, recip_max_tmp >> tmp_shift .set recip_mask_shift, recip_mask_shift + tmp_shift .endif .set tmp_shift, tmp_shift >> 1 .endr .if recip_max_tmp .set recip_mask_shift, recip_mask_shift + 1 .endif .set recip_mask_shift, (recip_mask_shift + 1) & 62 .set recip_max, recip_max & (255 << recip_mask_shift) //.set recip_max, 2 #endif udiv32_arm: #ifdef DIV_RECIP cmp r1, #3 bcc .L_udiv_tiny cmp r1, #recip_max bhi .L_udiv adr r3, .L_udiv_recip_table-12 ldr r2, [r3, r1, lsl #2] mov r3, r0 umull ip, r0, r2, r0 mul r2, r0, r1 cmp r3, r2 bxcs lr sub r0, r0, #1 bx lr .L_udiv_tiny: cmp r1, #1 movhi r0, r0, lsr #1 bxcs lr b .L_div0 #endif .L_udiv: /* Invert divisor. ARM_DIV_31_BODY uses adc to both subtract the divisor and add the next bit of the result. The correction code at .L_udiv32 does not need the divisor inverted, but can be modified to work with it, and this allows the zero divisor test to be done early and without an explicit comparison. */ rsbs r1, r1, #0 #ifndef DIV_RECIP beq .L_div0 #endif tst r0, r0 /* High bit must be unset, otherwise shift numerator right, calculate, and correct results. As this case is very uncommon we want to avoid any other delays on the main path in handling it, so the long divide calls the short divide as a function. */ bmi .L_udiv32 .L_udiv31: ARM_DIV_31_BODY r0, r1, r2, r3, ip, r0, r1 bx lr .L_udiv32: /* store original numerator and divisor, we'll need them to correct the result, */ stmdb sp, { r0, r1, lr } /* Call __div0 here if divisor is zero, otherwise it would report the wrong address. */ mov r0, r0, lsr #1 bl .L_udiv31 ldmdb sp, { r2, r3, lr } /* Move the low bit of the original numerator to the carry bit */ movs r2, r2, lsr #1 /* Shift the remainder left one and add in the carry bit */ adc r1, r1, r1 /* Subtract the original divisor from the remainder, setting carry if the result is non-negative */ adds r1, r1, r3 /* Shift quotient left one and add carry bit */ adc r0, r0, r0 bx lr .L_div0: /* __div0 expects the calling address on the top of the stack */ stmdb sp!, { lr } mov r0, #0 #if defined(__ARM_EABI__) || !defined(USE_IRAM) bl __div0 #else ldr pc, [pc, #-4] .word __div0 #endif #ifdef DIV_RECIP .L_udiv_recip_table: .set div, 3 .rept recip_max - 2 .if (div - 1) & div .set q, 0x40000000 / div .set r, (0x40000000 - (q * div))<<1 .set q, q << 1 .if r >= div .set q, q + 1 .set r, r - div .endif .set r, r << 1 .set q, q << 1 .if r >= div .set q, q + 1 .set r, r - div .endif .set q, q + 1 .else .set q, 0x40000000 / div * 4 .endif .word q .set div, div+1 .endr #endif .size udiv32_arm, . - udiv32_arm #else .macro ARMV5_UDIV32_BODY numerator, divisor, quotient, bits, inv, neg, div0label cmp \numerator, \divisor clz \bits, \divisor bcc 30f mov \inv, \divisor, lsl \bits add \neg, pc, \inv, lsr #25 cmp \inv, #1<<31 ldrhib \inv, [\neg, #.L_udiv_est_table-.-64] bls 20f subs \bits, \bits, #7 rsb \neg, \divisor, #0 movpl \divisor, \inv, lsl \bits bmi 10f mul \inv, \divisor, \neg smlawt \divisor, \divisor, \inv, \divisor mul \inv, \divisor, \neg /* This will save a cycle on ARMv6, but requires that the numerator sign bit is not set (that of inv is guaranteed unset). The branch should predict very well, making it typically 1 cycle, and thus both the branch and test fill delay cycles for the multiplies. Based on logging of numerator sizes in the APE codec, the branch is taken about 1/10^7 of the time. */ #if ARM_ARCH >= 6 tst \numerator, \numerator smmla \divisor, \divisor, \inv, \divisor bmi 40f smmul \inv, \numerator, \divisor #else mov \bits, #0 smlal \bits, \divisor, \inv, \divisor umull \bits, \inv, \numerator, \divisor #endif add \numerator, \numerator, \neg mla \divisor, \inv, \neg, \numerator mov \quotient, \inv cmn \divisor, \neg addcc \quotient, \quotient, #1 addpl \quotient, \quotient, #2 bx lr 10: rsb \bits, \bits, #0 sub \inv, \inv, #4 mov \divisor, \inv, lsr \bits umull \bits, \inv, \numerator, \divisor mla \divisor, \inv, \neg, \numerator mov \quotient, \inv cmn \neg, \divisor, lsr #1 addcs \divisor, \divisor, \neg, lsl #1 addcs \quotient, \quotient, #2 cmn \neg, \divisor addcs \quotient, \quotient, #1 bx lr 20: .ifnc "", "\div0label" rsb \bits, \bits, #31 bne \div0label .endif mov \quotient, \numerator, lsr \bits bx lr 30: mov \quotient, #0 bx lr #if ARM_ARCH >= 6 40: umull \bits, \inv, \numerator, \divisor add \numerator, \numerator, \neg mla \divisor, \inv, \neg, \numerator mov \quotient, \inv cmn \divisor, \neg addcc \quotient, \quotient, #1 addpl \quotient, \quotient, #2 bx lr #endif .endm udiv32_arm: ARMV5_UDIV32_BODY r0, r1, r0, r2, r3, ip, .L_div0 .L_div0: /* __div0 expects the calling address on the top of the stack */ stmdb sp!, { lr } mov r0, #0 #if defined(__ARM_EABI__) || !defined(USE_IRAM) bl __div0 #else ldr pc, [pc, #-4] .word __div0 #endif .L_udiv_est_table: .byte 0xff, 0xfc, 0xf8, 0xf4, 0xf0, 0xed, 0xea, 0xe6 .byte 0xe3, 0xe0, 0xdd, 0xda, 0xd7, 0xd4, 0xd2, 0xcf .byte 0xcc, 0xca, 0xc7, 0xc5, 0xc3, 0xc0, 0xbe, 0xbc .byte 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac .byte 0xaa, 0xa8, 0xa7, 0xa5, 0xa3, 0xa2, 0xa0, 0x9f .byte 0x9d, 0x9c, 0x9a, 0x99, 0x97, 0x96, 0x94, 0x93 .byte 0x92, 0x90, 0x8f, 0x8e, 0x8d, 0x8c, 0x8a, 0x89 .byte 0x88, 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81 #endif .size udiv32_arm, . - udiv32_arm