summaryrefslogtreecommitdiff
path: root/drivers/staging/zsmalloc/zsmalloc-main.c
blob: 917461c66014a23252399d2f7ac974c3777a0b8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

#ifdef CONFIG_ZSMALLOC_DEBUG
#define DEBUG
#endif

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
#include <linux/vmalloc.h>

#include "zsmalloc.h"
#include "zsmalloc_int.h"

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
	return test_bit(PG_private, &page->flags);
}

static int is_last_page(struct page *page)
{
	return test_bit(PG_private_2, &page->flags);
}

static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
				enum fullness_group *fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = (unsigned long)page->mapping;
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

static void set_zspage_mapping(struct page *page, unsigned int class_idx,
				enum fullness_group fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
	page->mapping = (struct address_space *)m;
}

static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

	return idx;
}

static enum fullness_group get_fullness_group(struct page *page)
{
	int inuse, max_objects;
	enum fullness_group fg;
	BUG_ON(!is_first_page(page));

	inuse = page->inuse;
	max_objects = page->objects;

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
	else if (inuse <= max_objects / fullness_threshold_frac)
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

static void insert_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	if (*head)
		list_add_tail(&page->lru, &(*head)->lru);

	*head = page;
}

static void remove_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	BUG_ON(!*head);
	if (list_empty(&(*head)->lru))
		*head = NULL;
	else if (*head == page)
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

	list_del_init(&page->lru);
}

static enum fullness_group fix_fullness_group(struct zs_pool *pool,
						struct page *page)
{
	int class_idx;
	struct size_class *class;
	enum fullness_group currfg, newfg;

	BUG_ON(!is_first_page(page));

	get_zspage_mapping(page, &class_idx, &currfg);
	newfg = get_fullness_group(page);
	if (newfg == currfg)
		goto out;

	class = &pool->size_class[class_idx];
	remove_zspage(page, class, currfg);
	insert_zspage(page, class, newfg);
	set_zspage_mapping(page, class_idx, newfg);

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
 *	wastage = Zp - Zp % size_class
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
static int get_zspage_order(int class_size)
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
		return page->first_page;
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
		next = (struct page *)page->private;
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

/* Encode <page, obj_idx> as a single handle value */
static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
{
	unsigned long handle;

	if (!page) {
		BUG_ON(obj_idx);
		return NULL;
	}

	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
	handle |= (obj_idx & OBJ_INDEX_MASK);

	return (void *)handle;
}

/* Decode <page, obj_idx> pair from the given object handle */
static void obj_handle_to_location(void *handle, struct page **page,
				unsigned long *obj_idx)
{
	unsigned long hval = (unsigned long)handle;

	*page = pfn_to_page(hval >> OBJ_INDEX_BITS);
	*obj_idx = hval & OBJ_INDEX_MASK;
}

static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
	reset_page_mapcount(page);
}

static void free_zspage(struct page *first_page)
{
	struct page *nextp, *tmp, *head_extra;

	BUG_ON(!is_first_page(first_page));
	BUG_ON(first_page->inuse);

	head_extra = (struct page *)page_private(first_page);

	reset_page(first_page);
	__free_page(first_page);

	/* zspage with only 1 system page */
	if (!head_extra)
		return;

	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
		list_del(&nextp->lru);
		reset_page(nextp);
		__free_page(nextp);
	}
	reset_page(head_extra);
	__free_page(head_extra);
}

/* Initialize a newly allocated zspage */
static void init_zspage(struct page *first_page, struct size_class *class)
{
	unsigned long off = 0;
	struct page *page = first_page;

	BUG_ON(!is_first_page(first_page));
	while (page) {
		struct page *next_page;
		struct link_free *link;
		unsigned int i, objs_on_page;

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

		link = (struct link_free *)kmap_atomic(page) +
						off / sizeof(*link);
		objs_on_page = (PAGE_SIZE - off) / class->size;

		for (i = 1; i <= objs_on_page; i++) {
			off += class->size;
			if (off < PAGE_SIZE) {
				link->next = obj_location_to_handle(page, i);
				link += class->size / sizeof(*link);
			}
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
		link->next = obj_location_to_handle(next_page, 0);
		kunmap_atomic(link);
		page = next_page;
		off = (off + class->size) % PAGE_SIZE;
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
	struct page *first_page = NULL;

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
	 * 3. each sub-page is linked to the first page using page->first_page
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
	for (i = 0; i < class->zspage_order; i++) {
		struct page *page, *prev_page;

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
			set_bit(PG_private, &page->flags);
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
			first_page->private = (unsigned long)page;
		if (i >= 1)
			page->first_page = first_page;
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
		if (i == class->zspage_order - 1)	/* last page */
			set_bit(PG_private_2, &page->flags);

		prev_page = page;
	}

	init_zspage(first_page, class);

	first_page->freelist = obj_location_to_handle(first_page, 0);
	/* Maximum number of objects we can store in this zspage */
	first_page->objects = class->zspage_order * PAGE_SIZE / class->size;

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}


/*
 * If this becomes a separate module, register zs_init() with
 * module_init(), zs_exit with module_exit(), and remove zs_initialized
*/
static int zs_initialized;

static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
	int cpu = (long)pcpu;
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
		if (area->vm)
			break;
		area->vm = alloc_vm_area(2 * PAGE_SIZE, area->vm_ptes);
		if (!area->vm)
			return notifier_from_errno(-ENOMEM);
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
		if (area->vm)
			free_vm_area(area->vm);
		area->vm = NULL;
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

static void zs_exit(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
	unregister_cpu_notifier(&zs_cpu_nb);
}

static int zs_init(void)
{
	int cpu, ret;

	register_cpu_notifier(&zs_cpu_nb);
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
		if (notifier_to_errno(ret))
			goto fail;
	}
	return 0;
fail:
	zs_exit();
	return notifier_to_errno(ret);
}

struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
{
	int i, error, ovhd_size;
	struct zs_pool *pool;

	if (!name)
		return NULL;

	ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
	pool = kzalloc(ovhd_size, GFP_KERNEL);
	if (!pool)
		return NULL;

	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
		int size;
		struct size_class *class;

		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;

		class = &pool->size_class[i];
		class->size = size;
		class->index = i;
		spin_lock_init(&class->lock);
		class->zspage_order = get_zspage_order(size);

	}

	/*
	 * If this becomes a separate module, register zs_init with
	 * module_init, and remove this block
	*/
	if (!zs_initialized) {
		error = zs_init();
		if (error)
			goto cleanup;
		zs_initialized = 1;
	}

	pool->flags = flags;
	pool->name = name;

	error = 0; /* Success */

cleanup:
	if (error) {
		zs_destroy_pool(pool);
		pool = NULL;
	}

	return pool;
}
EXPORT_SYMBOL_GPL(zs_create_pool);

void zs_destroy_pool(struct zs_pool *pool)
{
	int i;

	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
		int fg;
		struct size_class *class = &pool->size_class[i];

		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
				pr_info("Freeing non-empty class with size "
					"%db, fullness group %d\n",
					class->size, fg);
			}
		}
	}
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);

/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 * @page: page no. that holds the object
 * @offset: location of object within page
 *
 * On success, <page, offset> identifies block allocated
 * and 0 is returned. On failure, <page, offset> is set to
 * 0 and -ENOMEM is returned.
 *
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
void *zs_malloc(struct zs_pool *pool, size_t size)
{
	void *obj;
	struct link_free *link;
	int class_idx;
	struct size_class *class;

	struct page *first_page, *m_page;
	unsigned long m_objidx, m_offset;

	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
		return NULL;

	class_idx = get_size_class_index(size);
	class = &pool->size_class[class_idx];
	BUG_ON(class_idx != class->index);

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
		first_page = alloc_zspage(class, pool->flags);
		if (unlikely(!first_page))
			return NULL;

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
		spin_lock(&class->lock);
		class->pages_allocated += class->zspage_order;
	}

	obj = first_page->freelist;
	obj_handle_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

	link = (struct link_free *)kmap_atomic(m_page) +
					m_offset / sizeof(*link);
	first_page->freelist = link->next;
	memset(link, POISON_INUSE, sizeof(*link));
	kunmap_atomic(link);

	first_page->inuse++;
	/* Now move the zspage to another fullness group, if required */
	fix_fullness_group(pool, first_page);
	spin_unlock(&class->lock);

	return obj;
}
EXPORT_SYMBOL_GPL(zs_malloc);

void zs_free(struct zs_pool *pool, void *obj)
{
	struct link_free *link;
	struct page *first_page, *f_page;
	unsigned long f_objidx, f_offset;

	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!obj))
		return;

	obj_handle_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	class = &pool->size_class[class_idx];
	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

	spin_lock(&class->lock);

	/* Insert this object in containing zspage's freelist */
	link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
							+ f_offset);
	link->next = first_page->freelist;
	kunmap_atomic(link);
	first_page->freelist = obj;

	first_page->inuse--;
	fullness = fix_fullness_group(pool, first_page);

	if (fullness == ZS_EMPTY)
		class->pages_allocated -= class->zspage_order;

	spin_unlock(&class->lock);

	if (fullness == ZS_EMPTY)
		free_zspage(first_page);
}
EXPORT_SYMBOL_GPL(zs_free);

void *zs_map_object(struct zs_pool *pool, void *handle)
{
	struct page *page;
	unsigned long obj_idx, off;

	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;

	BUG_ON(!handle);

	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = &pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);

	area = &get_cpu_var(zs_map_area);
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
	} else {
		/* this object spans two pages */
		struct page *nextp;

		nextp = get_next_page(page);
		BUG_ON(!nextp);


		set_pte(area->vm_ptes[0], mk_pte(page, PAGE_KERNEL));
		set_pte(area->vm_ptes[1], mk_pte(nextp, PAGE_KERNEL));

		/* We pre-allocated VM area so mapping can never fail */
		area->vm_addr = area->vm->addr;
	}

	return area->vm_addr + off;
}
EXPORT_SYMBOL_GPL(zs_map_object);

void zs_unmap_object(struct zs_pool *pool, void *handle)
{
	struct page *page;
	unsigned long obj_idx, off;

	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;

	BUG_ON(!handle);

	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = &pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);

	area = &__get_cpu_var(zs_map_area);
	if (off + class->size <= PAGE_SIZE) {
		kunmap_atomic(area->vm_addr);
	} else {
		set_pte(area->vm_ptes[0], __pte(0));
		set_pte(area->vm_ptes[1], __pte(0));
		__flush_tlb_one((unsigned long)area->vm_addr);
		__flush_tlb_one((unsigned long)area->vm_addr + PAGE_SIZE);
	}
	put_cpu_var(zs_map_area);
}
EXPORT_SYMBOL_GPL(zs_unmap_object);

u64 zs_get_total_size_bytes(struct zs_pool *pool)
{
	int i;
	u64 npages = 0;

	for (i = 0; i < ZS_SIZE_CLASSES; i++)
		npages += pool->size_class[i].pages_allocated;

	return npages << PAGE_SHIFT;
}
EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);