summaryrefslogtreecommitdiff
path: root/drivers/staging/bcm/Qos.c
blob: 9455c25e2341488bb65f1c1644a74fe388339d3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
/**
 * @file Qos.C
 * This file contains the routines related to Quality of Service.
*/
#include "headers.h"

static void EThCSGetPktInfo(struct bcm_mini_adapter *Adapter,
			    PVOID pvEthPayload,
			    struct bcm_eth_packet_info *pstEthCsPktInfo);

static bool EThCSClassifyPkt(struct bcm_mini_adapter *Adapter,
			     struct sk_buff *skb,
			     struct bcm_eth_packet_info *pstEthCsPktInfo,
			     struct bcm_classifier_rule *pstClassifierRule,
			     B_UINT8 EthCSCupport);

static USHORT IpVersion4(struct bcm_mini_adapter *Adapter, struct iphdr *iphd,
			 struct bcm_classifier_rule *pstClassifierRule);

static VOID PruneQueue(struct bcm_mini_adapter *Adapter, INT iIndex);


/*******************************************************************
* Function    - MatchSrcIpAddress()
*
* Description - Checks whether the Source IP address from the packet
*				matches with that of Queue.
*
* Parameters  - pstClassifierRule: Pointer to the packet info structure.
*		- ulSrcIP	    : Source IP address from the packet.
*
* Returns     - TRUE(If address matches) else FAIL .
*********************************************************************/
static bool MatchSrcIpAddress(struct bcm_classifier_rule *pstClassifierRule,
			      ULONG ulSrcIP)
{
	UCHAR ucLoopIndex = 0;

	struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
	union u_ip_address	*src_addr;

	ulSrcIP = ntohl(ulSrcIP);
	if (0 == pstClassifierRule->ucIPSourceAddressLength)
		return TRUE;
	for (ucLoopIndex = 0; ucLoopIndex < (pstClassifierRule->ucIPSourceAddressLength); ucLoopIndex++) {
		src_addr = &pstClassifierRule->stSrcIpAddress;
		BCM_DEBUG_PRINT(Adapter,
				DBG_TYPE_TX,
				IPV4_DBG,
				DBG_LVL_ALL,
				"Src Ip Address Mask:0x%x PacketIp:0x%x and Classification:0x%x",
				(UINT)src_addr->ulIpv4Mask[ucLoopIndex],
				(UINT)ulSrcIP,
				(UINT)src_addr->ulIpv6Addr[ucLoopIndex]);

		if ((src_addr->ulIpv4Mask[ucLoopIndex] & ulSrcIP) ==
				(src_addr->ulIpv4Addr[ucLoopIndex] & src_addr->ulIpv4Mask[ucLoopIndex]))
			return TRUE;
	}
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Ip Address Not Matched");
	return false;
}


/*******************************************************************
* Function    - MatchDestIpAddress()
*
* Description - Checks whether the Destination IP address from the packet
*				matches with that of Queue.
*
* Parameters  - pstClassifierRule: Pointer to the packet info structure.
*		- ulDestIP    : Destination IP address from the packet.
*
* Returns     - TRUE(If address matches) else FAIL .
*********************************************************************/
static bool MatchDestIpAddress(struct bcm_classifier_rule *pstClassifierRule, ULONG ulDestIP)
{
	UCHAR ucLoopIndex = 0;
	struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
	union u_ip_address	*dest_addr = &pstClassifierRule->stDestIpAddress;

	ulDestIP = ntohl(ulDestIP);
	if (0 == pstClassifierRule->ucIPDestinationAddressLength)
		return TRUE;
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination Ip Address 0x%x 0x%x 0x%x  ", (UINT)ulDestIP, (UINT)dest_addr->ulIpv4Mask[ucLoopIndex], (UINT)dest_addr->ulIpv4Addr[ucLoopIndex]);

	for (ucLoopIndex = 0; ucLoopIndex < (pstClassifierRule->ucIPDestinationAddressLength); ucLoopIndex++) {
		if ((dest_addr->ulIpv4Mask[ucLoopIndex] & ulDestIP) ==
				(dest_addr->ulIpv4Addr[ucLoopIndex] & dest_addr->ulIpv4Mask[ucLoopIndex]))
			return TRUE;
	}
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination Ip Address Not Matched");
	return false;
}


/************************************************************************
* Function    - MatchTos()
*
* Description - Checks the TOS from the packet matches with that of queue.
*
* Parameters  - pstClassifierRule   : Pointer to the packet info structure.
*		- ucTypeOfService: TOS from the packet.
*
* Returns     - TRUE(If address matches) else FAIL.
**************************************************************************/
static bool MatchTos(struct bcm_classifier_rule *pstClassifierRule, UCHAR ucTypeOfService)
{
	struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);

	if (3 != pstClassifierRule->ucIPTypeOfServiceLength)
		return TRUE;

	if (((pstClassifierRule->ucTosMask & ucTypeOfService) <= pstClassifierRule->ucTosHigh) && ((pstClassifierRule->ucTosMask & ucTypeOfService) >= pstClassifierRule->ucTosLow))
		return TRUE;

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Type Of Service Not Matched");
	return false;
}


/***************************************************************************
* Function    - MatchProtocol()
*
* Description - Checks the protocol from the packet matches with that of queue.
*
* Parameters  - pstClassifierRule: Pointer to the packet info structure.
*		- ucProtocol	: Protocol from the packet.
*
* Returns     - TRUE(If address matches) else FAIL.
****************************************************************************/
bool MatchProtocol(struct bcm_classifier_rule *pstClassifierRule, UCHAR ucProtocol)
{
	UCHAR ucLoopIndex = 0;
	struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);

	if (0 == pstClassifierRule->ucProtocolLength)
		return TRUE;
	for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucProtocolLength; ucLoopIndex++) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Protocol:0x%X Classification Protocol:0x%X", ucProtocol, pstClassifierRule->ucProtocol[ucLoopIndex]);
		if (pstClassifierRule->ucProtocol[ucLoopIndex] == ucProtocol)
			return TRUE;
	}
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Protocol Not Matched");
	return false;
}


/***********************************************************************
* Function    - MatchSrcPort()
*
* Description - Checks, Source port from the packet matches with that of queue.
*
* Parameters  - pstClassifierRule: Pointer to the packet info structure.
*		- ushSrcPort	: Source port from the packet.
*
* Returns     - TRUE(If address matches) else FAIL.
***************************************************************************/
bool MatchSrcPort(struct bcm_classifier_rule *pstClassifierRule, USHORT ushSrcPort)
{
	UCHAR ucLoopIndex = 0;

	struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);


	if (0 == pstClassifierRule->ucSrcPortRangeLength)
		return TRUE;
	for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucSrcPortRangeLength; ucLoopIndex++) {
		if (ushSrcPort <= pstClassifierRule->usSrcPortRangeHi[ucLoopIndex] &&
			ushSrcPort >= pstClassifierRule->usSrcPortRangeLo[ucLoopIndex])
			return TRUE;
	}
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Port: %x Not Matched ", ushSrcPort);
	return false;
}


/***********************************************************************
* Function    - MatchDestPort()
*
* Description - Checks, Destination port from packet matches with that of queue.
*
* Parameters  - pstClassifierRule: Pointer to the packet info structure.
*		- ushDestPort	: Destination port from the packet.
*
* Returns     - TRUE(If address matches) else FAIL.
***************************************************************************/
bool MatchDestPort(struct bcm_classifier_rule *pstClassifierRule, USHORT ushDestPort)
{
	UCHAR ucLoopIndex = 0;
	struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);

	if (0 == pstClassifierRule->ucDestPortRangeLength)
		return TRUE;

	for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucDestPortRangeLength; ucLoopIndex++) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Matching Port:0x%X   0x%X  0x%X", ushDestPort, pstClassifierRule->usDestPortRangeLo[ucLoopIndex], pstClassifierRule->usDestPortRangeHi[ucLoopIndex]);

		if (ushDestPort <= pstClassifierRule->usDestPortRangeHi[ucLoopIndex] &&
			ushDestPort >= pstClassifierRule->usDestPortRangeLo[ucLoopIndex])
			return TRUE;
	}
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Dest Port: %x Not Matched", ushDestPort);
	return false;
}
/**
 * @ingroup tx_functions
 * Compares IPV4 Ip address and port number
 * @return Queue Index.
*/
static USHORT	IpVersion4(struct bcm_mini_adapter *Adapter,
			   struct iphdr *iphd,
			   struct bcm_classifier_rule *pstClassifierRule)
{
	struct bcm_transport_header *xprt_hdr = NULL;
	bool	bClassificationSucceed = false;

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "========>");

	xprt_hdr = (struct bcm_transport_header *)((PUCHAR)iphd + sizeof(struct iphdr));

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Trying to see Direction = %d %d",
		pstClassifierRule->ucDirection,
		pstClassifierRule->usVCID_Value);

	/* Checking classifier validity */
	if (!pstClassifierRule->bUsed || pstClassifierRule->ucDirection == DOWNLINK_DIR)
		goto out;

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "is IPv6 check!");
	if (pstClassifierRule->bIpv6Protocol)
		goto out;

	/* Checking IP header parameter */
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Trying to match Source IP Address");
	if (!MatchSrcIpAddress(pstClassifierRule, iphd->saddr))
		goto out;
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Source IP Address Matched");

	if (!MatchDestIpAddress(pstClassifierRule, iphd->daddr))
		goto out;
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination IP Address Matched");

	if (!MatchTos(pstClassifierRule, iphd->tos)) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "TOS Match failed\n");
		goto out;
	}
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "TOS Matched");

	if (!MatchProtocol(pstClassifierRule, iphd->protocol))
		goto out;
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Protocol Matched");

	/*
	 * if protocol is not TCP or UDP then no
	 * need of comparing source port and destination port
	 */
	if (iphd->protocol != TCP && iphd->protocol != UDP) {
		bClassificationSucceed = TRUE;
		goto out;
	}
	/* Checking Transport Layer Header field if present */
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Source Port %04x",
		(iphd->protocol == UDP) ? xprt_hdr->uhdr.source : xprt_hdr->thdr.source);

	if (!MatchSrcPort(pstClassifierRule,
			  ntohs((iphd->protocol == UDP) ?
			  xprt_hdr->uhdr.source : xprt_hdr->thdr.source)))
		goto out;
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Port Matched");

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination Port %04x",
		(iphd->protocol == UDP) ? xprt_hdr->uhdr.dest :
		xprt_hdr->thdr.dest);
	if (!MatchDestPort(pstClassifierRule,
			   ntohs((iphd->protocol == UDP) ?
			   xprt_hdr->uhdr.dest : xprt_hdr->thdr.dest)))
		goto out;
	bClassificationSucceed = TRUE;

out:
	if (TRUE == bClassificationSucceed) {
		INT iMatchedSFQueueIndex = 0;

		iMatchedSFQueueIndex = SearchSfid(Adapter, pstClassifierRule->ulSFID);
		if (iMatchedSFQueueIndex >= NO_OF_QUEUES)
			bClassificationSucceed = false;
		else if (false == Adapter->PackInfo[iMatchedSFQueueIndex].bActive)
			bClassificationSucceed = false;
	}

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "IpVersion4 <==========");

	return bClassificationSucceed;
}

VOID PruneQueueAllSF(struct bcm_mini_adapter *Adapter)
{
	UINT iIndex = 0;

	for (iIndex = 0; iIndex < HiPriority; iIndex++) {
		if (!Adapter->PackInfo[iIndex].bValid)
			continue;

		PruneQueue(Adapter, iIndex);
	}
}


/**
 * @ingroup tx_functions
 * This function checks if the max queue size for a queue
 * is less than number of bytes in the queue. If so -
 * drops packets from the Head till the number of bytes is
 * less than or equal to max queue size for the queue.
 */
static VOID PruneQueue(struct bcm_mini_adapter *Adapter, INT iIndex)
{
	struct sk_buff *PacketToDrop = NULL;
	struct net_device_stats *netstats;
	struct bcm_packet_info	*curr_pack_info = &Adapter->PackInfo[iIndex];

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "=====> Index %d", iIndex);

	if (iIndex == HiPriority)
		return;

	if (!Adapter || (iIndex < 0) || (iIndex > HiPriority))
		return;

	/* To Store the netdevice statistic */
	netstats = &Adapter->dev->stats;

	spin_lock_bh(&curr_pack_info->SFQueueLock);

	while (1) {
	/* while((UINT)Adapter->PackInfo[iIndex].uiCurrentPacketsOnHost > */
	/* 	SF_MAX_ALLOWED_PACKETS_TO_BACKUP) { */

		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "uiCurrentBytesOnHost:%x uiMaxBucketSize :%x",
		curr_pack_info->uiCurrentBytesOnHost,
		curr_pack_info->uiMaxBucketSize);

		PacketToDrop = curr_pack_info->FirstTxQueue;

		if (PacketToDrop == NULL)
			break;
		if ((curr_pack_info->uiCurrentPacketsOnHost < SF_MAX_ALLOWED_PACKETS_TO_BACKUP) &&
			((1000*(jiffies - *((B_UINT32 *)(PacketToDrop->cb)+SKB_CB_LATENCY_OFFSET))/HZ) <= curr_pack_info->uiMaxLatency))
			break;

		if (PacketToDrop) {
			if (netif_msg_tx_err(Adapter))
				pr_info(PFX "%s: tx queue %d overlimit\n",
					Adapter->dev->name, iIndex);

			netstats->tx_dropped++;

			DEQUEUEPACKET(curr_pack_info->FirstTxQueue,
						curr_pack_info->LastTxQueue);
			/* update current bytes and packets count */
			curr_pack_info->uiCurrentBytesOnHost -=
				PacketToDrop->len;
			curr_pack_info->uiCurrentPacketsOnHost--;
			/* update dropped bytes and packets counts */
			curr_pack_info->uiDroppedCountBytes += PacketToDrop->len;
			curr_pack_info->uiDroppedCountPackets++;
			dev_kfree_skb(PacketToDrop);

		}

		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "Dropped Bytes:%x Dropped Packets:%x",
			curr_pack_info->uiDroppedCountBytes,
			curr_pack_info->uiDroppedCountPackets);

		atomic_dec(&Adapter->TotalPacketCount);
	}

	spin_unlock_bh(&curr_pack_info->SFQueueLock);

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "TotalPacketCount:%x",
		atomic_read(&Adapter->TotalPacketCount));
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "<=====");
}

VOID flush_all_queues(struct bcm_mini_adapter *Adapter)
{
	INT	iQIndex;
	UINT uiTotalPacketLength;
	struct sk_buff *PacketToDrop = NULL;
	struct bcm_packet_info *curr_packet_info;

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "=====>");

	/* down(&Adapter->data_packet_queue_lock); */
	for (iQIndex = LowPriority; iQIndex < HiPriority; iQIndex++) {
		struct net_device_stats *netstats = &Adapter->dev->stats;
		curr_packet_info = &Adapter->PackInfo[iQIndex];

		spin_lock_bh(&curr_packet_info->SFQueueLock);
		while (curr_packet_info->FirstTxQueue) {
			PacketToDrop = curr_packet_info->FirstTxQueue;
			if (PacketToDrop) {
				uiTotalPacketLength = PacketToDrop->len;
				netstats->tx_dropped++;
			} else
				uiTotalPacketLength = 0;

			DEQUEUEPACKET(curr_packet_info->FirstTxQueue,
						curr_packet_info->LastTxQueue);

			/* Free the skb */
			dev_kfree_skb(PacketToDrop);

			/* update current bytes and packets count */
			curr_packet_info->uiCurrentBytesOnHost -= uiTotalPacketLength;
			curr_packet_info->uiCurrentPacketsOnHost--;

			/* update dropped bytes and packets counts */
			curr_packet_info->uiDroppedCountBytes += uiTotalPacketLength;
			curr_packet_info->uiDroppedCountPackets++;

			BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "Dropped Bytes:%x Dropped Packets:%x",
					curr_packet_info->uiDroppedCountBytes,
					curr_packet_info->uiDroppedCountPackets);
			atomic_dec(&Adapter->TotalPacketCount);
		}
		spin_unlock_bh(&curr_packet_info->SFQueueLock);
	}
	/* up(&Adapter->data_packet_queue_lock); */
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "<=====");
}

USHORT ClassifyPacket(struct bcm_mini_adapter *Adapter, struct sk_buff *skb)
{
	INT uiLoopIndex = 0;
	struct bcm_classifier_rule *pstClassifierRule = NULL;
	struct bcm_eth_packet_info stEthCsPktInfo;
	PVOID pvEThPayload = NULL;
	struct iphdr *pIpHeader = NULL;
	INT uiSfIndex = 0;
	USHORT usIndex = Adapter->usBestEffortQueueIndex;
	bool bFragmentedPkt = false, bClassificationSucceed = false;
	USHORT usCurrFragment = 0;

	struct bcm_tcp_header *pTcpHeader;
	UCHAR IpHeaderLength;
	UCHAR TcpHeaderLength;

	pvEThPayload = skb->data;
	*((UINT32 *) (skb->cb) + SKB_CB_TCPACK_OFFSET) = 0;
	EThCSGetPktInfo(Adapter, pvEThPayload, &stEthCsPktInfo);

	switch (stEthCsPktInfo.eNwpktEthFrameType) {
	case eEth802LLCFrame:
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802LLCFrame\n");
		pIpHeader = pvEThPayload + sizeof(struct bcm_eth_llc_frame);
		break;
	case eEth802LLCSNAPFrame:
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802LLC SNAP Frame\n");
		pIpHeader = pvEThPayload + sizeof(struct bcm_eth_llc_snap_frame);
		break;
	case eEth802QVLANFrame:
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802.1Q VLANFrame\n");
		pIpHeader = pvEThPayload + sizeof(struct bcm_eth_q_frame);
		break;
	case eEthOtherFrame:
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : ETH Other Frame\n");
		pIpHeader = pvEThPayload + sizeof(struct bcm_ethernet2_frame);
		break;
	default:
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : Unrecognized ETH Frame\n");
		pIpHeader = pvEThPayload + sizeof(struct bcm_ethernet2_frame);
		break;
	}

	if (stEthCsPktInfo.eNwpktIPFrameType == eIPv4Packet) {
		usCurrFragment = (ntohs(pIpHeader->frag_off) & IP_OFFSET);
		if ((ntohs(pIpHeader->frag_off) & IP_MF) || usCurrFragment)
			bFragmentedPkt = TRUE;

		if (bFragmentedPkt) {
			/* Fragmented  Packet. Get Frag Classifier Entry. */
			pstClassifierRule = GetFragIPClsEntry(Adapter, pIpHeader->id, pIpHeader->saddr);
			if (pstClassifierRule) {
					BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "It is next Fragmented pkt");
					bClassificationSucceed = TRUE;
			}
			if (!(ntohs(pIpHeader->frag_off) & IP_MF)) {
				/* Fragmented Last packet . Remove Frag Classifier Entry */
				BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "This is the last fragmented Pkt");
				DelFragIPClsEntry(Adapter, pIpHeader->id, pIpHeader->saddr);
			}
		}
	}

	for (uiLoopIndex = MAX_CLASSIFIERS - 1; uiLoopIndex >= 0; uiLoopIndex--) {
		if (bClassificationSucceed)
			break;
		/*
		 * Iterate through all classifiers which are already in order of priority
		 * to classify the packet until match found
		 */
		if (false == Adapter->astClassifierTable[uiLoopIndex].bUsed) {
			bClassificationSucceed = false;
			continue;
		}
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "Adapter->PackInfo[%d].bvalid=True\n", uiLoopIndex);

		if (0 == Adapter->astClassifierTable[uiLoopIndex].ucDirection) {
			bClassificationSucceed = false; /* cannot be processed for classification. */
			continue;	/* it is a down link connection */
		}

		pstClassifierRule = &Adapter->astClassifierTable[uiLoopIndex];

		uiSfIndex = SearchSfid(Adapter, pstClassifierRule->ulSFID);
		if (uiSfIndex >= NO_OF_QUEUES) {
			BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "Queue Not Valid. SearchSfid for this classifier Failed\n");
			continue;
		}

		if (Adapter->PackInfo[uiSfIndex].bEthCSSupport) {

			if (eEthUnsupportedFrame == stEthCsPktInfo.eNwpktEthFrameType) {
				BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet Not a Valid Supported Ethernet Frame\n");
				bClassificationSucceed = false;
				continue;
			}



			BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "Performing ETH CS Classification on Classifier Rule ID : %x Service Flow ID : %lx\n", pstClassifierRule->uiClassifierRuleIndex, Adapter->PackInfo[uiSfIndex].ulSFID);
			bClassificationSucceed = EThCSClassifyPkt(Adapter, skb, &stEthCsPktInfo, pstClassifierRule, Adapter->PackInfo[uiSfIndex].bEthCSSupport);

			if (!bClassificationSucceed) {
				BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "ClassifyPacket : Ethernet CS Classification Failed\n");
				continue;
			}
		} else { /* No ETH Supported on this SF */
			if (eEthOtherFrame != stEthCsPktInfo.eNwpktEthFrameType) {
				BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet Not a 802.3 Ethernet Frame... hence not allowed over non-ETH CS SF\n");
				bClassificationSucceed = false;
				continue;
			}
		}

		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "Proceeding to IP CS Clasification");

		if (Adapter->PackInfo[uiSfIndex].bIPCSSupport) {

			if (stEthCsPktInfo.eNwpktIPFrameType == eNonIPPacket) {
				BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet is Not an IP Packet\n");
				bClassificationSucceed = false;
				continue;
			}
			BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Dump IP Header :\n");
			DumpFullPacket((PUCHAR)pIpHeader, 20);

			if (stEthCsPktInfo.eNwpktIPFrameType == eIPv4Packet)
				bClassificationSucceed = IpVersion4(Adapter, pIpHeader, pstClassifierRule);
			else if (stEthCsPktInfo.eNwpktIPFrameType == eIPv6Packet)
				bClassificationSucceed = IpVersion6(Adapter, pIpHeader, pstClassifierRule);
		}
	}

	if (bClassificationSucceed == TRUE) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "CF id : %d, SF ID is =%lu", pstClassifierRule->uiClassifierRuleIndex, pstClassifierRule->ulSFID);

		/* Store The matched Classifier in SKB */
		*((UINT32 *)(skb->cb)+SKB_CB_CLASSIFICATION_OFFSET) = pstClassifierRule->uiClassifierRuleIndex;
		if ((TCP == pIpHeader->protocol) && !bFragmentedPkt && (ETH_AND_IP_HEADER_LEN + TCP_HEADER_LEN <= skb->len)) {
			IpHeaderLength = pIpHeader->ihl;
			pTcpHeader = (struct bcm_tcp_header *)(((PUCHAR)pIpHeader)+(IpHeaderLength*4));
			TcpHeaderLength  = GET_TCP_HEADER_LEN(pTcpHeader->HeaderLength);

			if ((pTcpHeader->ucFlags & TCP_ACK) &&
			   (ntohs(pIpHeader->tot_len) == (IpHeaderLength*4)+(TcpHeaderLength*4)))
				*((UINT32 *) (skb->cb) + SKB_CB_TCPACK_OFFSET) = TCP_ACK;
		}

		usIndex = SearchSfid(Adapter, pstClassifierRule->ulSFID);
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "index is	=%d", usIndex);

		/*
		 * If this is the first fragment of a Fragmented pkt,
		 * add this CF. Only This CF should be used for all other
		 * fragment of this Pkt.
		 */
		if (bFragmentedPkt && (usCurrFragment == 0)) {
			/*
			 * First Fragment of Fragmented Packet.
			 * Create Frag CLS Entry
			 */
			struct bcm_fragmented_packet_info stFragPktInfo;

			stFragPktInfo.bUsed = TRUE;
			stFragPktInfo.ulSrcIpAddress = pIpHeader->saddr;
			stFragPktInfo.usIpIdentification = pIpHeader->id;
			stFragPktInfo.pstMatchedClassifierEntry = pstClassifierRule;
			stFragPktInfo.bOutOfOrderFragment = false;
			AddFragIPClsEntry(Adapter, &stFragPktInfo);
		}


	}

	return (bClassificationSucceed ? usIndex : INVALID_QUEUE_INDEX);
}

static bool EthCSMatchSrcMACAddress(struct bcm_classifier_rule *pstClassifierRule, PUCHAR Mac)
{
	UINT i = 0;
	struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);

	if (pstClassifierRule->ucEthCSSrcMACLen == 0)
		return TRUE;
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "%s\n", __func__);
	for (i = 0; i < MAC_ADDRESS_SIZE; i++) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "SRC MAC[%x] = %x ClassifierRuleSrcMAC = %x Mask : %x\n", i, Mac[i], pstClassifierRule->au8EThCSSrcMAC[i], pstClassifierRule->au8EThCSSrcMACMask[i]);
		if ((pstClassifierRule->au8EThCSSrcMAC[i] & pstClassifierRule->au8EThCSSrcMACMask[i]) !=
			(Mac[i] & pstClassifierRule->au8EThCSSrcMACMask[i]))
			return false;
	}
	return TRUE;
}

static bool EthCSMatchDestMACAddress(struct bcm_classifier_rule *pstClassifierRule, PUCHAR Mac)
{
	UINT i = 0;
	struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);

	if (pstClassifierRule->ucEthCSDestMACLen == 0)
		return TRUE;
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s\n", __func__);
	for (i = 0; i < MAC_ADDRESS_SIZE; i++) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "SRC MAC[%x] = %x ClassifierRuleSrcMAC = %x Mask : %x\n", i, Mac[i], pstClassifierRule->au8EThCSDestMAC[i], pstClassifierRule->au8EThCSDestMACMask[i]);
		if ((pstClassifierRule->au8EThCSDestMAC[i] & pstClassifierRule->au8EThCSDestMACMask[i]) !=
			(Mac[i] & pstClassifierRule->au8EThCSDestMACMask[i]))
			return false;
	}
	return TRUE;
}

static bool EthCSMatchEThTypeSAP(struct bcm_classifier_rule *pstClassifierRule, struct sk_buff *skb, struct bcm_eth_packet_info *pstEthCsPktInfo)
{
	struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);

	if ((pstClassifierRule->ucEtherTypeLen == 0) ||
		(pstClassifierRule->au8EthCSEtherType[0] == 0))
		return TRUE;

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "%s SrcEtherType:%x CLS EtherType[0]:%x\n", __func__, pstEthCsPktInfo->usEtherType, pstClassifierRule->au8EthCSEtherType[0]);
	if (pstClassifierRule->au8EthCSEtherType[0] == 1) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "%s  CLS EtherType[1]:%x EtherType[2]:%x\n", __func__, pstClassifierRule->au8EthCSEtherType[1], pstClassifierRule->au8EthCSEtherType[2]);

		if (memcmp(&pstEthCsPktInfo->usEtherType, &pstClassifierRule->au8EthCSEtherType[1], 2) == 0)
			return TRUE;
		else
			return false;
	}

	if (pstClassifierRule->au8EthCSEtherType[0] == 2) {
		if (eEth802LLCFrame != pstEthCsPktInfo->eNwpktEthFrameType)
			return false;

		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "%s  EthCS DSAP:%x EtherType[2]:%x\n", __func__, pstEthCsPktInfo->ucDSAP, pstClassifierRule->au8EthCSEtherType[2]);
		if (pstEthCsPktInfo->ucDSAP == pstClassifierRule->au8EthCSEtherType[2])
			return TRUE;
		else
			return false;

	}

	return false;

}

static bool EthCSMatchVLANRules(struct bcm_classifier_rule *pstClassifierRule, struct sk_buff *skb, struct bcm_eth_packet_info *pstEthCsPktInfo)
{
	bool bClassificationSucceed = false;
	USHORT usVLANID;
	B_UINT8 uPriority = 0;
	struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "%s  CLS UserPrio:%x CLS VLANID:%x\n", __func__, ntohs(*((USHORT *)pstClassifierRule->usUserPriority)), pstClassifierRule->usVLANID);

	/*
	 * In case FW didn't receive the TLV,
	 * the priority field should be ignored
	 */
	if (pstClassifierRule->usValidityBitMap & (1<<PKT_CLASSIFICATION_USER_PRIORITY_VALID)) {
		if (pstEthCsPktInfo->eNwpktEthFrameType != eEth802QVLANFrame)
				return false;

		uPriority = (ntohs(*(USHORT *)(skb->data + sizeof(struct bcm_eth_header))) & 0xF000) >> 13;

		if ((uPriority >= pstClassifierRule->usUserPriority[0]) && (uPriority <= pstClassifierRule->usUserPriority[1]))
				bClassificationSucceed = TRUE;

		if (!bClassificationSucceed)
			return false;
	}

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "ETH CS 802.1 D  User Priority Rule Matched\n");

	bClassificationSucceed = false;

	if (pstClassifierRule->usValidityBitMap & (1<<PKT_CLASSIFICATION_VLANID_VALID)) {
		if (pstEthCsPktInfo->eNwpktEthFrameType != eEth802QVLANFrame)
				return false;

		usVLANID = ntohs(*(USHORT *)(skb->data + sizeof(struct bcm_eth_header))) & 0xFFF;

		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "%s  Pkt VLANID %x Priority: %d\n", __func__, usVLANID, uPriority);

		if (usVLANID == ((pstClassifierRule->usVLANID & 0xFFF0) >> 4))
			bClassificationSucceed = TRUE;

		if (!bClassificationSucceed)
			return false;
	}

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "ETH CS 802.1 Q VLAN ID Rule Matched\n");

	return TRUE;
}


static bool EThCSClassifyPkt(struct bcm_mini_adapter *Adapter, struct sk_buff *skb,
				struct bcm_eth_packet_info *pstEthCsPktInfo,
				struct bcm_classifier_rule *pstClassifierRule,
				B_UINT8 EthCSCupport)
{
	bool bClassificationSucceed = false;

	bClassificationSucceed = EthCSMatchSrcMACAddress(pstClassifierRule, ((struct bcm_eth_header *)(skb->data))->au8SourceAddress);
	if (!bClassificationSucceed)
		return false;
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "ETH CS SrcMAC Matched\n");

	bClassificationSucceed = EthCSMatchDestMACAddress(pstClassifierRule, ((struct bcm_eth_header *)(skb->data))->au8DestinationAddress);
	if (!bClassificationSucceed)
		return false;
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "ETH CS DestMAC Matched\n");

	/* classify on ETHType/802.2SAP TLV */
	bClassificationSucceed = EthCSMatchEThTypeSAP(pstClassifierRule, skb, pstEthCsPktInfo);
	if (!bClassificationSucceed)
		return false;

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "ETH CS EthType/802.2SAP Matched\n");

	/* classify on 802.1VLAN Header Parameters */
	bClassificationSucceed = EthCSMatchVLANRules(pstClassifierRule, skb, pstEthCsPktInfo);
	if (!bClassificationSucceed)
		return false;
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "ETH CS 802.1 VLAN Rules Matched\n");

	return bClassificationSucceed;
}

static void EThCSGetPktInfo(struct bcm_mini_adapter *Adapter, PVOID pvEthPayload,
			    struct bcm_eth_packet_info *pstEthCsPktInfo)
{
	USHORT u16Etype = ntohs(((struct bcm_eth_header *)pvEthPayload)->u16Etype);

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "EthCSGetPktInfo : Eth Hdr Type : %X\n", u16Etype);
	if (u16Etype > 0x5dc) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCSGetPktInfo : ETH2 Frame\n");
		/* ETH2 Frame */
		if (u16Etype == ETHERNET_FRAMETYPE_802QVLAN) {
			/* 802.1Q VLAN Header */
			pstEthCsPktInfo->eNwpktEthFrameType = eEth802QVLANFrame;
			u16Etype = ((struct bcm_eth_q_frame *)pvEthPayload)->EthType;
			/* ((ETH_CS_802_Q_FRAME*)pvEthPayload)->UserPriority */
		} else {
			pstEthCsPktInfo->eNwpktEthFrameType = eEthOtherFrame;
			u16Etype = ntohs(u16Etype);
		}
	} else {
		/* 802.2 LLC */
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "802.2 LLC Frame\n");
		pstEthCsPktInfo->eNwpktEthFrameType = eEth802LLCFrame;
		pstEthCsPktInfo->ucDSAP = ((struct bcm_eth_llc_frame *)pvEthPayload)->DSAP;
		if (pstEthCsPktInfo->ucDSAP == 0xAA && ((struct bcm_eth_llc_frame *)pvEthPayload)->SSAP == 0xAA) {
			/* SNAP Frame */
			pstEthCsPktInfo->eNwpktEthFrameType = eEth802LLCSNAPFrame;
			u16Etype = ((struct bcm_eth_llc_snap_frame *)pvEthPayload)->usEtherType;
		}
	}
	if (u16Etype == ETHERNET_FRAMETYPE_IPV4)
		pstEthCsPktInfo->eNwpktIPFrameType = eIPv4Packet;
	else if (u16Etype == ETHERNET_FRAMETYPE_IPV6)
		pstEthCsPktInfo->eNwpktIPFrameType = eIPv6Packet;
	else
		pstEthCsPktInfo->eNwpktIPFrameType = eNonIPPacket;

	pstEthCsPktInfo->usEtherType = ((struct bcm_eth_header *)pvEthPayload)->u16Etype;
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "EthCsPktInfo->eNwpktIPFrameType : %x\n", pstEthCsPktInfo->eNwpktIPFrameType);
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "EthCsPktInfo->eNwpktEthFrameType : %x\n", pstEthCsPktInfo->eNwpktEthFrameType);
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL,  "EthCsPktInfo->usEtherType : %x\n", pstEthCsPktInfo->usEtherType);
}