summaryrefslogtreecommitdiff
path: root/drivers/pci/controller/pcie-iproc-msi.c
blob: cb3401a931f89523db1bbc6fc1421bf955e999bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2015 Broadcom Corporation
 */

#include <linux/interrupt.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdomain.h>
#include <linux/msi.h>
#include <linux/of_irq.h>
#include <linux/of_pci.h>
#include <linux/pci.h>

#include "pcie-iproc.h"

#define IPROC_MSI_INTR_EN_SHIFT        11
#define IPROC_MSI_INTR_EN              BIT(IPROC_MSI_INTR_EN_SHIFT)
#define IPROC_MSI_INT_N_EVENT_SHIFT    1
#define IPROC_MSI_INT_N_EVENT          BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
#define IPROC_MSI_EQ_EN_SHIFT          0
#define IPROC_MSI_EQ_EN                BIT(IPROC_MSI_EQ_EN_SHIFT)

#define IPROC_MSI_EQ_MASK              0x3f

/* Max number of GIC interrupts */
#define NR_HW_IRQS                     6

/* Number of entries in each event queue */
#define EQ_LEN                         64

/* Size of each event queue memory region */
#define EQ_MEM_REGION_SIZE             SZ_4K

/* Size of each MSI address region */
#define MSI_MEM_REGION_SIZE            SZ_4K

enum iproc_msi_reg {
	IPROC_MSI_EQ_PAGE = 0,
	IPROC_MSI_EQ_PAGE_UPPER,
	IPROC_MSI_PAGE,
	IPROC_MSI_PAGE_UPPER,
	IPROC_MSI_CTRL,
	IPROC_MSI_EQ_HEAD,
	IPROC_MSI_EQ_TAIL,
	IPROC_MSI_INTS_EN,
	IPROC_MSI_REG_SIZE,
};

struct iproc_msi;

/**
 * iProc MSI group
 *
 * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
 * event queue.
 *
 * @msi: pointer to iProc MSI data
 * @gic_irq: GIC interrupt
 * @eq: Event queue number
 */
struct iproc_msi_grp {
	struct iproc_msi *msi;
	int gic_irq;
	unsigned int eq;
};

/**
 * iProc event queue based MSI
 *
 * Only meant to be used on platforms without MSI support integrated into the
 * GIC.
 *
 * @pcie: pointer to iProc PCIe data
 * @reg_offsets: MSI register offsets
 * @grps: MSI groups
 * @nr_irqs: number of total interrupts connected to GIC
 * @nr_cpus: number of toal CPUs
 * @has_inten_reg: indicates the MSI interrupt enable register needs to be
 * set explicitly (required for some legacy platforms)
 * @bitmap: MSI vector bitmap
 * @bitmap_lock: lock to protect access to the MSI bitmap
 * @nr_msi_vecs: total number of MSI vectors
 * @inner_domain: inner IRQ domain
 * @msi_domain: MSI IRQ domain
 * @nr_eq_region: required number of 4K aligned memory region for MSI event
 * queues
 * @nr_msi_region: required number of 4K aligned address region for MSI posted
 * writes
 * @eq_cpu: pointer to allocated memory region for MSI event queues
 * @eq_dma: DMA address of MSI event queues
 * @msi_addr: MSI address
 */
struct iproc_msi {
	struct iproc_pcie *pcie;
	const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
	struct iproc_msi_grp *grps;
	int nr_irqs;
	int nr_cpus;
	bool has_inten_reg;
	unsigned long *bitmap;
	struct mutex bitmap_lock;
	unsigned int nr_msi_vecs;
	struct irq_domain *inner_domain;
	struct irq_domain *msi_domain;
	unsigned int nr_eq_region;
	unsigned int nr_msi_region;
	void *eq_cpu;
	dma_addr_t eq_dma;
	phys_addr_t msi_addr;
};

static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
};

static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
	{ 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
	{ 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
	{ 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
	{ 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
};

static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
				     enum iproc_msi_reg reg,
				     unsigned int eq)
{
	struct iproc_pcie *pcie = msi->pcie;

	return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
}

static inline void iproc_msi_write_reg(struct iproc_msi *msi,
				       enum iproc_msi_reg reg,
				       int eq, u32 val)
{
	struct iproc_pcie *pcie = msi->pcie;

	writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
}

static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
{
	return (hwirq % msi->nr_irqs);
}

static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
						 unsigned long hwirq)
{
	if (msi->nr_msi_region > 1)
		return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
	else
		return hwirq_to_group(msi, hwirq) * sizeof(u32);
}

static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
{
	if (msi->nr_eq_region > 1)
		return eq * EQ_MEM_REGION_SIZE;
	else
		return eq * EQ_LEN * sizeof(u32);
}

static struct irq_chip iproc_msi_irq_chip = {
	.name = "iProc-MSI",
};

static struct msi_domain_info iproc_msi_domain_info = {
	.flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
		MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
	.chip = &iproc_msi_irq_chip,
};

/*
 * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
 * dedicated event queue.  Each MSI group can support up to 64 MSI vectors.
 *
 * The number of MSI groups varies between different iProc SoCs.  The total
 * number of CPU cores also varies.  To support MSI IRQ affinity, we
 * distribute GIC interrupts across all available CPUs.  MSI vector is moved
 * from one GIC interrupt to another to steer to the target CPU.
 *
 * Assuming:
 * - the number of MSI groups is M
 * - the number of CPU cores is N
 * - M is always a multiple of N
 *
 * Total number of raw MSI vectors = M * 64
 * Total number of supported MSI vectors = (M * 64) / N
 */
static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
{
	return (hwirq % msi->nr_cpus);
}

static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
						     unsigned long hwirq)
{
	return (hwirq - hwirq_to_cpu(msi, hwirq));
}

static int iproc_msi_irq_set_affinity(struct irq_data *data,
				      const struct cpumask *mask, bool force)
{
	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
	int target_cpu = cpumask_first(mask);
	int curr_cpu;

	curr_cpu = hwirq_to_cpu(msi, data->hwirq);
	if (curr_cpu == target_cpu)
		return IRQ_SET_MASK_OK_DONE;

	/* steer MSI to the target CPU */
	data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;

	return IRQ_SET_MASK_OK;
}

static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
					  struct msi_msg *msg)
{
	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
	dma_addr_t addr;

	addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
	msg->address_lo = lower_32_bits(addr);
	msg->address_hi = upper_32_bits(addr);
	msg->data = data->hwirq << 5;
}

static struct irq_chip iproc_msi_bottom_irq_chip = {
	.name = "MSI",
	.irq_set_affinity = iproc_msi_irq_set_affinity,
	.irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
};

static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
				      unsigned int virq, unsigned int nr_irqs,
				      void *args)
{
	struct iproc_msi *msi = domain->host_data;
	int hwirq, i;

	mutex_lock(&msi->bitmap_lock);

	/* Allocate 'nr_cpus' number of MSI vectors each time */
	hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0,
					   msi->nr_cpus, 0);
	if (hwirq < msi->nr_msi_vecs) {
		bitmap_set(msi->bitmap, hwirq, msi->nr_cpus);
	} else {
		mutex_unlock(&msi->bitmap_lock);
		return -ENOSPC;
	}

	mutex_unlock(&msi->bitmap_lock);

	for (i = 0; i < nr_irqs; i++) {
		irq_domain_set_info(domain, virq + i, hwirq + i,
				    &iproc_msi_bottom_irq_chip,
				    domain->host_data, handle_simple_irq,
				    NULL, NULL);
	}

	return hwirq;
}

static void iproc_msi_irq_domain_free(struct irq_domain *domain,
				      unsigned int virq, unsigned int nr_irqs)
{
	struct irq_data *data = irq_domain_get_irq_data(domain, virq);
	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
	unsigned int hwirq;

	mutex_lock(&msi->bitmap_lock);

	hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
	bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus);

	mutex_unlock(&msi->bitmap_lock);

	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
}

static const struct irq_domain_ops msi_domain_ops = {
	.alloc = iproc_msi_irq_domain_alloc,
	.free = iproc_msi_irq_domain_free,
};

static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
{
	u32 *msg, hwirq;
	unsigned int offs;

	offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
	msg = (u32 *)(msi->eq_cpu + offs);
	hwirq = readl(msg);
	hwirq = (hwirq >> 5) + (hwirq & 0x1f);

	/*
	 * Since we have multiple hwirq mapped to a single MSI vector,
	 * now we need to derive the hwirq at CPU0.  It can then be used to
	 * mapped back to virq.
	 */
	return hwirq_to_canonical_hwirq(msi, hwirq);
}

static void iproc_msi_handler(struct irq_desc *desc)
{
	struct irq_chip *chip = irq_desc_get_chip(desc);
	struct iproc_msi_grp *grp;
	struct iproc_msi *msi;
	u32 eq, head, tail, nr_events;
	unsigned long hwirq;
	int virq;

	chained_irq_enter(chip, desc);

	grp = irq_desc_get_handler_data(desc);
	msi = grp->msi;
	eq = grp->eq;

	/*
	 * iProc MSI event queue is tracked by head and tail pointers.  Head
	 * pointer indicates the next entry (MSI data) to be consumed by SW in
	 * the queue and needs to be updated by SW.  iProc MSI core uses the
	 * tail pointer as the next data insertion point.
	 *
	 * Entries between head and tail pointers contain valid MSI data.  MSI
	 * data is guaranteed to be in the event queue memory before the tail
	 * pointer is updated by the iProc MSI core.
	 */
	head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
				  eq) & IPROC_MSI_EQ_MASK;
	do {
		tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
					  eq) & IPROC_MSI_EQ_MASK;

		/*
		 * Figure out total number of events (MSI data) to be
		 * processed.
		 */
		nr_events = (tail < head) ?
			(EQ_LEN - (head - tail)) : (tail - head);
		if (!nr_events)
			break;

		/* process all outstanding events */
		while (nr_events--) {
			hwirq = decode_msi_hwirq(msi, eq, head);
			virq = irq_find_mapping(msi->inner_domain, hwirq);
			generic_handle_irq(virq);

			head++;
			head %= EQ_LEN;
		}

		/*
		 * Now all outstanding events have been processed.  Update the
		 * head pointer.
		 */
		iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);

		/*
		 * Now go read the tail pointer again to see if there are new
		 * oustanding events that came in during the above window.
		 */
	} while (true);

	chained_irq_exit(chip, desc);
}

static void iproc_msi_enable(struct iproc_msi *msi)
{
	int i, eq;
	u32 val;

	/* Program memory region for each event queue */
	for (i = 0; i < msi->nr_eq_region; i++) {
		dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);

		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
				    lower_32_bits(addr));
		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
				    upper_32_bits(addr));
	}

	/* Program address region for MSI posted writes */
	for (i = 0; i < msi->nr_msi_region; i++) {
		phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);

		iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
				    lower_32_bits(addr));
		iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
				    upper_32_bits(addr));
	}

	for (eq = 0; eq < msi->nr_irqs; eq++) {
		/* Enable MSI event queue */
		val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
			IPROC_MSI_EQ_EN;
		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);

		/*
		 * Some legacy platforms require the MSI interrupt enable
		 * register to be set explicitly.
		 */
		if (msi->has_inten_reg) {
			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
			val |= BIT(eq);
			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
		}
	}
}

static void iproc_msi_disable(struct iproc_msi *msi)
{
	u32 eq, val;

	for (eq = 0; eq < msi->nr_irqs; eq++) {
		if (msi->has_inten_reg) {
			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
			val &= ~BIT(eq);
			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
		}

		val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
		val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
			 IPROC_MSI_EQ_EN);
		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
	}
}

static int iproc_msi_alloc_domains(struct device_node *node,
				   struct iproc_msi *msi)
{
	msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs,
						  &msi_domain_ops, msi);
	if (!msi->inner_domain)
		return -ENOMEM;

	msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
						    &iproc_msi_domain_info,
						    msi->inner_domain);
	if (!msi->msi_domain) {
		irq_domain_remove(msi->inner_domain);
		return -ENOMEM;
	}

	return 0;
}

static void iproc_msi_free_domains(struct iproc_msi *msi)
{
	if (msi->msi_domain)
		irq_domain_remove(msi->msi_domain);

	if (msi->inner_domain)
		irq_domain_remove(msi->inner_domain);
}

static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
{
	int i;

	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
		irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
						 NULL, NULL);
	}
}

static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
{
	int i, ret;
	cpumask_var_t mask;
	struct iproc_pcie *pcie = msi->pcie;

	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
		irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
						 iproc_msi_handler,
						 &msi->grps[i]);
		/* Dedicate GIC interrupt to each CPU core */
		if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
			cpumask_clear(mask);
			cpumask_set_cpu(cpu, mask);
			ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
			if (ret)
				dev_err(pcie->dev,
					"failed to set affinity for IRQ%d\n",
					msi->grps[i].gic_irq);
			free_cpumask_var(mask);
		} else {
			dev_err(pcie->dev, "failed to alloc CPU mask\n");
			ret = -EINVAL;
		}

		if (ret) {
			/* Free all configured/unconfigured IRQs */
			iproc_msi_irq_free(msi, cpu);
			return ret;
		}
	}

	return 0;
}

int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
{
	struct iproc_msi *msi;
	int i, ret;
	unsigned int cpu;

	if (!of_device_is_compatible(node, "brcm,iproc-msi"))
		return -ENODEV;

	if (!of_find_property(node, "msi-controller", NULL))
		return -ENODEV;

	if (pcie->msi)
		return -EBUSY;

	msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
	if (!msi)
		return -ENOMEM;

	msi->pcie = pcie;
	pcie->msi = msi;
	msi->msi_addr = pcie->base_addr;
	mutex_init(&msi->bitmap_lock);
	msi->nr_cpus = num_possible_cpus();

	msi->nr_irqs = of_irq_count(node);
	if (!msi->nr_irqs) {
		dev_err(pcie->dev, "found no MSI GIC interrupt\n");
		return -ENODEV;
	}

	if (msi->nr_irqs > NR_HW_IRQS) {
		dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
			 msi->nr_irqs);
		msi->nr_irqs = NR_HW_IRQS;
	}

	if (msi->nr_irqs < msi->nr_cpus) {
		dev_err(pcie->dev,
			"not enough GIC interrupts for MSI affinity\n");
		return -EINVAL;
	}

	if (msi->nr_irqs % msi->nr_cpus != 0) {
		msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
		dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
			 msi->nr_irqs);
	}

	switch (pcie->type) {
	case IPROC_PCIE_PAXB_BCMA:
	case IPROC_PCIE_PAXB:
		msi->reg_offsets = iproc_msi_reg_paxb;
		msi->nr_eq_region = 1;
		msi->nr_msi_region = 1;
		break;
	case IPROC_PCIE_PAXC:
		msi->reg_offsets = iproc_msi_reg_paxc;
		msi->nr_eq_region = msi->nr_irqs;
		msi->nr_msi_region = msi->nr_irqs;
		break;
	default:
		dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
		return -EINVAL;
	}

	if (of_find_property(node, "brcm,pcie-msi-inten", NULL))
		msi->has_inten_reg = true;

	msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
	msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs),
				   sizeof(*msi->bitmap), GFP_KERNEL);
	if (!msi->bitmap)
		return -ENOMEM;

	msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
				 GFP_KERNEL);
	if (!msi->grps)
		return -ENOMEM;

	for (i = 0; i < msi->nr_irqs; i++) {
		unsigned int irq = irq_of_parse_and_map(node, i);

		if (!irq) {
			dev_err(pcie->dev, "unable to parse/map interrupt\n");
			ret = -ENODEV;
			goto free_irqs;
		}
		msi->grps[i].gic_irq = irq;
		msi->grps[i].msi = msi;
		msi->grps[i].eq = i;
	}

	/* Reserve memory for event queue and make sure memories are zeroed */
	msi->eq_cpu = dma_alloc_coherent(pcie->dev,
					 msi->nr_eq_region * EQ_MEM_REGION_SIZE,
					 &msi->eq_dma, GFP_KERNEL);
	if (!msi->eq_cpu) {
		ret = -ENOMEM;
		goto free_irqs;
	}

	ret = iproc_msi_alloc_domains(node, msi);
	if (ret) {
		dev_err(pcie->dev, "failed to create MSI domains\n");
		goto free_eq_dma;
	}

	for_each_online_cpu(cpu) {
		ret = iproc_msi_irq_setup(msi, cpu);
		if (ret)
			goto free_msi_irq;
	}

	iproc_msi_enable(msi);

	return 0;

free_msi_irq:
	for_each_online_cpu(cpu)
		iproc_msi_irq_free(msi, cpu);
	iproc_msi_free_domains(msi);

free_eq_dma:
	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
			  msi->eq_cpu, msi->eq_dma);

free_irqs:
	for (i = 0; i < msi->nr_irqs; i++) {
		if (msi->grps[i].gic_irq)
			irq_dispose_mapping(msi->grps[i].gic_irq);
	}
	pcie->msi = NULL;
	return ret;
}
EXPORT_SYMBOL(iproc_msi_init);

void iproc_msi_exit(struct iproc_pcie *pcie)
{
	struct iproc_msi *msi = pcie->msi;
	unsigned int i, cpu;

	if (!msi)
		return;

	iproc_msi_disable(msi);

	for_each_online_cpu(cpu)
		iproc_msi_irq_free(msi, cpu);

	iproc_msi_free_domains(msi);

	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
			  msi->eq_cpu, msi->eq_dma);

	for (i = 0; i < msi->nr_irqs; i++) {
		if (msi->grps[i].gic_irq)
			irq_dispose_mapping(msi->grps[i].gic_irq);
	}
}
EXPORT_SYMBOL(iproc_msi_exit);