summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/broadcom/bnxt/bnxt_tc.c
blob: 4730c048ed9bdfce51d63d2215769245fb02cfb1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
/* Broadcom NetXtreme-C/E network driver.
 *
 * Copyright (c) 2017 Broadcom Limited
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation.
 */

#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/if_vlan.h>
#include <net/flow_dissector.h>
#include <net/pkt_cls.h>
#include <net/tc_act/tc_gact.h>
#include <net/tc_act/tc_skbedit.h>
#include <net/tc_act/tc_mirred.h>
#include <net/tc_act/tc_vlan.h>

#include "bnxt_hsi.h"
#include "bnxt.h"
#include "bnxt_sriov.h"
#include "bnxt_tc.h"
#include "bnxt_vfr.h"

#define BNXT_FID_INVALID			0xffff
#define VLAN_TCI(vid, prio)	((vid) | ((prio) << VLAN_PRIO_SHIFT))

/* Return the dst fid of the func for flow forwarding
 * For PFs: src_fid is the fid of the PF
 * For VF-reps: src_fid the fid of the VF
 */
static u16 bnxt_flow_get_dst_fid(struct bnxt *pf_bp, struct net_device *dev)
{
	struct bnxt *bp;

	/* check if dev belongs to the same switch */
	if (!switchdev_port_same_parent_id(pf_bp->dev, dev)) {
		netdev_info(pf_bp->dev, "dev(ifindex=%d) not on same switch",
			    dev->ifindex);
		return BNXT_FID_INVALID;
	}

	/* Is dev a VF-rep? */
	if (dev != pf_bp->dev)
		return bnxt_vf_rep_get_fid(dev);

	bp = netdev_priv(dev);
	return bp->pf.fw_fid;
}

static int bnxt_tc_parse_redir(struct bnxt *bp,
			       struct bnxt_tc_actions *actions,
			       const struct tc_action *tc_act)
{
	int ifindex = tcf_mirred_ifindex(tc_act);
	struct net_device *dev;
	u16 dst_fid;

	dev = __dev_get_by_index(dev_net(bp->dev), ifindex);
	if (!dev) {
		netdev_info(bp->dev, "no dev for ifindex=%d", ifindex);
		return -EINVAL;
	}

	/* find the FID from dev */
	dst_fid = bnxt_flow_get_dst_fid(bp, dev);
	if (dst_fid == BNXT_FID_INVALID) {
		netdev_info(bp->dev, "can't get fid for ifindex=%d", ifindex);
		return -EINVAL;
	}

	actions->flags |= BNXT_TC_ACTION_FLAG_FWD;
	actions->dst_fid = dst_fid;
	actions->dst_dev = dev;
	return 0;
}

static void bnxt_tc_parse_vlan(struct bnxt *bp,
			       struct bnxt_tc_actions *actions,
			       const struct tc_action *tc_act)
{
	if (tcf_vlan_action(tc_act) == TCA_VLAN_ACT_POP) {
		actions->flags |= BNXT_TC_ACTION_FLAG_POP_VLAN;
	} else if (tcf_vlan_action(tc_act) == TCA_VLAN_ACT_PUSH) {
		actions->flags |= BNXT_TC_ACTION_FLAG_PUSH_VLAN;
		actions->push_vlan_tci = htons(tcf_vlan_push_vid(tc_act));
		actions->push_vlan_tpid = tcf_vlan_push_proto(tc_act);
	}
}

static int bnxt_tc_parse_actions(struct bnxt *bp,
				 struct bnxt_tc_actions *actions,
				 struct tcf_exts *tc_exts)
{
	const struct tc_action *tc_act;
	LIST_HEAD(tc_actions);
	int rc;

	if (!tcf_exts_has_actions(tc_exts)) {
		netdev_info(bp->dev, "no actions");
		return -EINVAL;
	}

	tcf_exts_to_list(tc_exts, &tc_actions);
	list_for_each_entry(tc_act, &tc_actions, list) {
		/* Drop action */
		if (is_tcf_gact_shot(tc_act)) {
			actions->flags |= BNXT_TC_ACTION_FLAG_DROP;
			return 0; /* don't bother with other actions */
		}

		/* Redirect action */
		if (is_tcf_mirred_egress_redirect(tc_act)) {
			rc = bnxt_tc_parse_redir(bp, actions, tc_act);
			if (rc)
				return rc;
			continue;
		}

		/* Push/pop VLAN */
		if (is_tcf_vlan(tc_act)) {
			bnxt_tc_parse_vlan(bp, actions, tc_act);
			continue;
		}
	}

	return 0;
}

#define GET_KEY(flow_cmd, key_type)					\
		skb_flow_dissector_target((flow_cmd)->dissector, key_type,\
					  (flow_cmd)->key)
#define GET_MASK(flow_cmd, key_type)					\
		skb_flow_dissector_target((flow_cmd)->dissector, key_type,\
					  (flow_cmd)->mask)

static int bnxt_tc_parse_flow(struct bnxt *bp,
			      struct tc_cls_flower_offload *tc_flow_cmd,
			      struct bnxt_tc_flow *flow)
{
	struct flow_dissector *dissector = tc_flow_cmd->dissector;
	u16 addr_type = 0;

	/* KEY_CONTROL and KEY_BASIC are needed for forming a meaningful key */
	if ((dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CONTROL)) == 0 ||
	    (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_BASIC)) == 0) {
		netdev_info(bp->dev, "cannot form TC key: used_keys = 0x%x",
			    dissector->used_keys);
		return -EOPNOTSUPP;
	}

	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_CONTROL)) {
		struct flow_dissector_key_control *key =
			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_CONTROL);

		addr_type = key->addr_type;
	}

	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC)) {
		struct flow_dissector_key_basic *key =
			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_BASIC);
		struct flow_dissector_key_basic *mask =
			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_BASIC);

		flow->l2_key.ether_type = key->n_proto;
		flow->l2_mask.ether_type = mask->n_proto;

		if (key->n_proto == htons(ETH_P_IP) ||
		    key->n_proto == htons(ETH_P_IPV6)) {
			flow->l4_key.ip_proto = key->ip_proto;
			flow->l4_mask.ip_proto = mask->ip_proto;
		}
	}

	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
		struct flow_dissector_key_eth_addrs *key =
			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_ETH_ADDRS);
		struct flow_dissector_key_eth_addrs *mask =
			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_ETH_ADDRS);

		flow->flags |= BNXT_TC_FLOW_FLAGS_ETH_ADDRS;
		ether_addr_copy(flow->l2_key.dmac, key->dst);
		ether_addr_copy(flow->l2_mask.dmac, mask->dst);
		ether_addr_copy(flow->l2_key.smac, key->src);
		ether_addr_copy(flow->l2_mask.smac, mask->src);
	}

	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_VLAN)) {
		struct flow_dissector_key_vlan *key =
			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_VLAN);
		struct flow_dissector_key_vlan *mask =
			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_VLAN);

		flow->l2_key.inner_vlan_tci =
		   cpu_to_be16(VLAN_TCI(key->vlan_id, key->vlan_priority));
		flow->l2_mask.inner_vlan_tci =
		   cpu_to_be16((VLAN_TCI(mask->vlan_id, mask->vlan_priority)));
		flow->l2_key.inner_vlan_tpid = htons(ETH_P_8021Q);
		flow->l2_mask.inner_vlan_tpid = htons(0xffff);
		flow->l2_key.num_vlans = 1;
	}

	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
		struct flow_dissector_key_ipv4_addrs *key =
			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV4_ADDRS);
		struct flow_dissector_key_ipv4_addrs *mask =
			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV4_ADDRS);

		flow->flags |= BNXT_TC_FLOW_FLAGS_IPV4_ADDRS;
		flow->l3_key.ipv4.daddr.s_addr = key->dst;
		flow->l3_mask.ipv4.daddr.s_addr = mask->dst;
		flow->l3_key.ipv4.saddr.s_addr = key->src;
		flow->l3_mask.ipv4.saddr.s_addr = mask->src;
	} else if (dissector_uses_key(dissector,
				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
		struct flow_dissector_key_ipv6_addrs *key =
			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV6_ADDRS);
		struct flow_dissector_key_ipv6_addrs *mask =
			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV6_ADDRS);

		flow->flags |= BNXT_TC_FLOW_FLAGS_IPV6_ADDRS;
		flow->l3_key.ipv6.daddr = key->dst;
		flow->l3_mask.ipv6.daddr = mask->dst;
		flow->l3_key.ipv6.saddr = key->src;
		flow->l3_mask.ipv6.saddr = mask->src;
	}

	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_PORTS)) {
		struct flow_dissector_key_ports *key =
			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_PORTS);
		struct flow_dissector_key_ports *mask =
			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_PORTS);

		flow->flags |= BNXT_TC_FLOW_FLAGS_PORTS;
		flow->l4_key.ports.dport = key->dst;
		flow->l4_mask.ports.dport = mask->dst;
		flow->l4_key.ports.sport = key->src;
		flow->l4_mask.ports.sport = mask->src;
	}

	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_ICMP)) {
		struct flow_dissector_key_icmp *key =
			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_ICMP);
		struct flow_dissector_key_icmp *mask =
			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_ICMP);

		flow->flags |= BNXT_TC_FLOW_FLAGS_ICMP;
		flow->l4_key.icmp.type = key->type;
		flow->l4_key.icmp.code = key->code;
		flow->l4_mask.icmp.type = mask->type;
		flow->l4_mask.icmp.code = mask->code;
	}

	return bnxt_tc_parse_actions(bp, &flow->actions, tc_flow_cmd->exts);
}

static int bnxt_hwrm_cfa_flow_free(struct bnxt *bp, __le16 flow_handle)
{
	struct hwrm_cfa_flow_free_input req = { 0 };
	int rc;

	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_FREE, -1, -1);
	req.flow_handle = flow_handle;

	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
	if (rc)
		netdev_info(bp->dev, "Error: %s: flow_handle=0x%x rc=%d",
			    __func__, flow_handle, rc);
	return rc;
}

static int ipv6_mask_len(struct in6_addr *mask)
{
	int mask_len = 0, i;

	for (i = 0; i < 4; i++)
		mask_len += inet_mask_len(mask->s6_addr32[i]);

	return mask_len;
}

static bool is_wildcard(void *mask, int len)
{
	const u8 *p = mask;
	int i;

	for (i = 0; i < len; i++) {
		if (p[i] != 0)
			return false;
	}
	return true;
}

static int bnxt_hwrm_cfa_flow_alloc(struct bnxt *bp, struct bnxt_tc_flow *flow,
				    __le16 ref_flow_handle, __le16 *flow_handle)
{
	struct hwrm_cfa_flow_alloc_output *resp = bp->hwrm_cmd_resp_addr;
	struct bnxt_tc_actions *actions = &flow->actions;
	struct bnxt_tc_l3_key *l3_mask = &flow->l3_mask;
	struct bnxt_tc_l3_key *l3_key = &flow->l3_key;
	struct hwrm_cfa_flow_alloc_input req = { 0 };
	u16 flow_flags = 0, action_flags = 0;
	int rc;

	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_ALLOC, -1, -1);

	req.src_fid = cpu_to_le16(flow->src_fid);
	req.ref_flow_handle = ref_flow_handle;
	req.ethertype = flow->l2_key.ether_type;
	req.ip_proto = flow->l4_key.ip_proto;

	if (flow->flags & BNXT_TC_FLOW_FLAGS_ETH_ADDRS) {
		memcpy(req.dmac, flow->l2_key.dmac, ETH_ALEN);
		memcpy(req.smac, flow->l2_key.smac, ETH_ALEN);
	}

	if (flow->l2_key.num_vlans > 0) {
		flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_NUM_VLAN_ONE;
		/* FW expects the inner_vlan_tci value to be set
		 * in outer_vlan_tci when num_vlans is 1 (which is
		 * always the case in TC.)
		 */
		req.outer_vlan_tci = flow->l2_key.inner_vlan_tci;
	}

	/* If all IP and L4 fields are wildcarded then this is an L2 flow */
	if (is_wildcard(&l3_mask, sizeof(l3_mask)) &&
	    is_wildcard(&flow->l4_mask, sizeof(flow->l4_mask))) {
		flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_L2;
	} else {
		flow_flags |= flow->l2_key.ether_type == htons(ETH_P_IP) ?
				CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV4 :
				CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV6;

		if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV4_ADDRS) {
			req.ip_dst[0] = l3_key->ipv4.daddr.s_addr;
			req.ip_dst_mask_len =
				inet_mask_len(l3_mask->ipv4.daddr.s_addr);
			req.ip_src[0] = l3_key->ipv4.saddr.s_addr;
			req.ip_src_mask_len =
				inet_mask_len(l3_mask->ipv4.saddr.s_addr);
		} else if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV6_ADDRS) {
			memcpy(req.ip_dst, l3_key->ipv6.daddr.s6_addr32,
			       sizeof(req.ip_dst));
			req.ip_dst_mask_len =
					ipv6_mask_len(&l3_mask->ipv6.daddr);
			memcpy(req.ip_src, l3_key->ipv6.saddr.s6_addr32,
			       sizeof(req.ip_src));
			req.ip_src_mask_len =
					ipv6_mask_len(&l3_mask->ipv6.saddr);
		}
	}

	if (flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) {
		req.l4_src_port = flow->l4_key.ports.sport;
		req.l4_src_port_mask = flow->l4_mask.ports.sport;
		req.l4_dst_port = flow->l4_key.ports.dport;
		req.l4_dst_port_mask = flow->l4_mask.ports.dport;
	} else if (flow->flags & BNXT_TC_FLOW_FLAGS_ICMP) {
		/* l4 ports serve as type/code when ip_proto is ICMP */
		req.l4_src_port = htons(flow->l4_key.icmp.type);
		req.l4_src_port_mask = htons(flow->l4_mask.icmp.type);
		req.l4_dst_port = htons(flow->l4_key.icmp.code);
		req.l4_dst_port_mask = htons(flow->l4_mask.icmp.code);
	}
	req.flags = cpu_to_le16(flow_flags);

	if (actions->flags & BNXT_TC_ACTION_FLAG_DROP) {
		action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_DROP;
	} else {
		if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) {
			action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_FWD;
			req.dst_fid = cpu_to_le16(actions->dst_fid);
		}
		if (actions->flags & BNXT_TC_ACTION_FLAG_PUSH_VLAN) {
			action_flags |=
			    CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
			req.l2_rewrite_vlan_tpid = actions->push_vlan_tpid;
			req.l2_rewrite_vlan_tci = actions->push_vlan_tci;
			memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
			memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
		}
		if (actions->flags & BNXT_TC_ACTION_FLAG_POP_VLAN) {
			action_flags |=
			    CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
			/* Rewrite config with tpid = 0 implies vlan pop */
			req.l2_rewrite_vlan_tpid = 0;
			memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
			memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
		}
	}
	req.action_flags = cpu_to_le16(action_flags);

	mutex_lock(&bp->hwrm_cmd_lock);

	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
	if (!rc)
		*flow_handle = resp->flow_handle;

	mutex_unlock(&bp->hwrm_cmd_lock);

	return rc;
}

/* Add val to accum while handling a possible wraparound
 * of val. Eventhough val is of type u64, its actual width
 * is denoted by mask and will wrap-around beyond that width.
 */
static void accumulate_val(u64 *accum, u64 val, u64 mask)
{
#define low_bits(x, mask)		((x) & (mask))
#define high_bits(x, mask)		((x) & ~(mask))
	bool wrapped = val < low_bits(*accum, mask);

	*accum = high_bits(*accum, mask) + val;
	if (wrapped)
		*accum += (mask + 1);
}

/* The HW counters' width is much less than 64bits.
 * Handle possible wrap-around while updating the stat counters
 */
static void bnxt_flow_stats_fix_wraparound(struct bnxt_tc_info *tc_info,
					   struct bnxt_tc_flow_stats *stats,
					   struct bnxt_tc_flow_stats *hw_stats)
{
	accumulate_val(&stats->bytes, hw_stats->bytes, tc_info->bytes_mask);
	accumulate_val(&stats->packets, hw_stats->packets,
		       tc_info->packets_mask);
}

/* Fix possible wraparound of the stats queried from HW, calculate
 * the delta from prev_stats, and also update the prev_stats.
 * The HW flow stats are fetched under the hwrm_cmd_lock mutex.
 * This routine is best called while under the mutex so that the
 * stats processing happens atomically.
 */
static void bnxt_flow_stats_calc(struct bnxt_tc_info *tc_info,
				 struct bnxt_tc_flow *flow,
				 struct bnxt_tc_flow_stats *stats)
{
	struct bnxt_tc_flow_stats *acc_stats, *prev_stats;

	acc_stats = &flow->stats;
	bnxt_flow_stats_fix_wraparound(tc_info, acc_stats, stats);

	prev_stats = &flow->prev_stats;
	stats->bytes = acc_stats->bytes - prev_stats->bytes;
	stats->packets = acc_stats->packets - prev_stats->packets;
	*prev_stats = *acc_stats;
}

static int bnxt_hwrm_cfa_flow_stats_get(struct bnxt *bp,
					__le16 flow_handle,
					struct bnxt_tc_flow *flow,
					struct bnxt_tc_flow_stats *stats)
{
	struct hwrm_cfa_flow_stats_output *resp = bp->hwrm_cmd_resp_addr;
	struct hwrm_cfa_flow_stats_input req = { 0 };
	int rc;

	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_STATS, -1, -1);
	req.num_flows = cpu_to_le16(1);
	req.flow_handle_0 = flow_handle;

	mutex_lock(&bp->hwrm_cmd_lock);
	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
	if (!rc) {
		stats->packets = le64_to_cpu(resp->packet_0);
		stats->bytes = le64_to_cpu(resp->byte_0);
		bnxt_flow_stats_calc(&bp->tc_info, flow, stats);
	} else {
		netdev_info(bp->dev, "error rc=%d", rc);
	}

	mutex_unlock(&bp->hwrm_cmd_lock);
	return rc;
}

static int bnxt_tc_put_l2_node(struct bnxt *bp,
			       struct bnxt_tc_flow_node *flow_node)
{
	struct bnxt_tc_l2_node *l2_node = flow_node->l2_node;
	struct bnxt_tc_info *tc_info = &bp->tc_info;
	int rc;

	/* remove flow_node from the L2 shared flow list */
	list_del(&flow_node->l2_list_node);
	if (--l2_node->refcount == 0) {
		rc =  rhashtable_remove_fast(&tc_info->l2_table, &l2_node->node,
					     tc_info->l2_ht_params);
		if (rc)
			netdev_err(bp->dev,
				   "Error: %s: rhashtable_remove_fast: %d",
				   __func__, rc);
		kfree_rcu(l2_node, rcu);
	}
	return 0;
}

static struct bnxt_tc_l2_node *
bnxt_tc_get_l2_node(struct bnxt *bp, struct rhashtable *l2_table,
		    struct rhashtable_params ht_params,
		    struct bnxt_tc_l2_key *l2_key)
{
	struct bnxt_tc_l2_node *l2_node;
	int rc;

	l2_node = rhashtable_lookup_fast(l2_table, l2_key, ht_params);
	if (!l2_node) {
		l2_node = kzalloc(sizeof(*l2_node), GFP_KERNEL);
		if (!l2_node) {
			rc = -ENOMEM;
			return NULL;
		}

		l2_node->key = *l2_key;
		rc = rhashtable_insert_fast(l2_table, &l2_node->node,
					    ht_params);
		if (rc) {
			kfree(l2_node);
			netdev_err(bp->dev,
				   "Error: %s: rhashtable_insert_fast: %d",
				   __func__, rc);
			return NULL;
		}
		INIT_LIST_HEAD(&l2_node->common_l2_flows);
	}
	return l2_node;
}

/* Get the ref_flow_handle for a flow by checking if there are any other
 * flows that share the same L2 key as this flow.
 */
static int
bnxt_tc_get_ref_flow_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
			    struct bnxt_tc_flow_node *flow_node,
			    __le16 *ref_flow_handle)
{
	struct bnxt_tc_info *tc_info = &bp->tc_info;
	struct bnxt_tc_flow_node *ref_flow_node;
	struct bnxt_tc_l2_node *l2_node;

	l2_node = bnxt_tc_get_l2_node(bp, &tc_info->l2_table,
				      tc_info->l2_ht_params,
				      &flow->l2_key);
	if (!l2_node)
		return -1;

	/* If any other flow is using this l2_node, use it's flow_handle
	 * as the ref_flow_handle
	 */
	if (l2_node->refcount > 0) {
		ref_flow_node = list_first_entry(&l2_node->common_l2_flows,
						 struct bnxt_tc_flow_node,
						 l2_list_node);
		*ref_flow_handle = ref_flow_node->flow_handle;
	} else {
		*ref_flow_handle = cpu_to_le16(0xffff);
	}

	/* Insert the l2_node into the flow_node so that subsequent flows
	 * with a matching l2 key can use the flow_handle of this flow
	 * as their ref_flow_handle
	 */
	flow_node->l2_node = l2_node;
	list_add(&flow_node->l2_list_node, &l2_node->common_l2_flows);
	l2_node->refcount++;
	return 0;
}

/* After the flow parsing is done, this routine is used for checking
 * if there are any aspects of the flow that prevent it from being
 * offloaded.
 */
static bool bnxt_tc_can_offload(struct bnxt *bp, struct bnxt_tc_flow *flow)
{
	/* If L4 ports are specified then ip_proto must be TCP or UDP */
	if ((flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) &&
	    (flow->l4_key.ip_proto != IPPROTO_TCP &&
	     flow->l4_key.ip_proto != IPPROTO_UDP)) {
		netdev_info(bp->dev, "Cannot offload non-TCP/UDP (%d) ports",
			    flow->l4_key.ip_proto);
		return false;
	}

	return true;
}

static int __bnxt_tc_del_flow(struct bnxt *bp,
			      struct bnxt_tc_flow_node *flow_node)
{
	struct bnxt_tc_info *tc_info = &bp->tc_info;
	int rc;

	/* send HWRM cmd to free the flow-id */
	bnxt_hwrm_cfa_flow_free(bp, flow_node->flow_handle);

	mutex_lock(&tc_info->lock);

	/* release reference to l2 node */
	bnxt_tc_put_l2_node(bp, flow_node);

	mutex_unlock(&tc_info->lock);

	rc = rhashtable_remove_fast(&tc_info->flow_table, &flow_node->node,
				    tc_info->flow_ht_params);
	if (rc)
		netdev_err(bp->dev, "Error: %s: rhashtable_remove_fast rc=%d",
			   __func__, rc);

	kfree_rcu(flow_node, rcu);
	return 0;
}

/* Add a new flow or replace an existing flow.
 * Notes on locking:
 * There are essentially two critical sections here.
 * 1. while adding a new flow
 *    a) lookup l2-key
 *    b) issue HWRM cmd and get flow_handle
 *    c) link l2-key with flow
 * 2. while deleting a flow
 *    a) unlinking l2-key from flow
 * A lock is needed to protect these two critical sections.
 *
 * The hash-tables are already protected by the rhashtable API.
 */
static int bnxt_tc_add_flow(struct bnxt *bp, u16 src_fid,
			    struct tc_cls_flower_offload *tc_flow_cmd)
{
	struct bnxt_tc_flow_node *new_node, *old_node;
	struct bnxt_tc_info *tc_info = &bp->tc_info;
	struct bnxt_tc_flow *flow;
	__le16 ref_flow_handle;
	int rc;

	/* allocate memory for the new flow and it's node */
	new_node = kzalloc(sizeof(*new_node), GFP_KERNEL);
	if (!new_node) {
		rc = -ENOMEM;
		goto done;
	}
	new_node->cookie = tc_flow_cmd->cookie;
	flow = &new_node->flow;

	rc = bnxt_tc_parse_flow(bp, tc_flow_cmd, flow);
	if (rc)
		goto free_node;
	flow->src_fid = src_fid;

	if (!bnxt_tc_can_offload(bp, flow)) {
		rc = -ENOSPC;
		goto free_node;
	}

	/* If a flow exists with the same cookie, delete it */
	old_node = rhashtable_lookup_fast(&tc_info->flow_table,
					  &tc_flow_cmd->cookie,
					  tc_info->flow_ht_params);
	if (old_node)
		__bnxt_tc_del_flow(bp, old_node);

	/* Check if the L2 part of the flow has been offloaded already.
	 * If so, bump up it's refcnt and get it's reference handle.
	 */
	mutex_lock(&tc_info->lock);
	rc = bnxt_tc_get_ref_flow_handle(bp, flow, new_node, &ref_flow_handle);
	if (rc)
		goto unlock;

	/* send HWRM cmd to alloc the flow */
	rc = bnxt_hwrm_cfa_flow_alloc(bp, flow, ref_flow_handle,
				      &new_node->flow_handle);
	if (rc)
		goto put_l2;

	/* add new flow to flow-table */
	rc = rhashtable_insert_fast(&tc_info->flow_table, &new_node->node,
				    tc_info->flow_ht_params);
	if (rc)
		goto hwrm_flow_free;

	mutex_unlock(&tc_info->lock);
	return 0;

hwrm_flow_free:
	bnxt_hwrm_cfa_flow_free(bp, new_node->flow_handle);
put_l2:
	bnxt_tc_put_l2_node(bp, new_node);
unlock:
	mutex_unlock(&tc_info->lock);
free_node:
	kfree(new_node);
done:
	netdev_err(bp->dev, "Error: %s: cookie=0x%lx error=%d",
		   __func__, tc_flow_cmd->cookie, rc);
	return rc;
}

static int bnxt_tc_del_flow(struct bnxt *bp,
			    struct tc_cls_flower_offload *tc_flow_cmd)
{
	struct bnxt_tc_info *tc_info = &bp->tc_info;
	struct bnxt_tc_flow_node *flow_node;

	flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
					   &tc_flow_cmd->cookie,
					   tc_info->flow_ht_params);
	if (!flow_node) {
		netdev_info(bp->dev, "ERROR: no flow_node for cookie %lx",
			    tc_flow_cmd->cookie);
		return -EINVAL;
	}

	return __bnxt_tc_del_flow(bp, flow_node);
}

static int bnxt_tc_get_flow_stats(struct bnxt *bp,
				  struct tc_cls_flower_offload *tc_flow_cmd)
{
	struct bnxt_tc_info *tc_info = &bp->tc_info;
	struct bnxt_tc_flow_node *flow_node;
	struct bnxt_tc_flow_stats stats;
	int rc;

	flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
					   &tc_flow_cmd->cookie,
					   tc_info->flow_ht_params);
	if (!flow_node) {
		netdev_info(bp->dev, "Error: no flow_node for cookie %lx",
			    tc_flow_cmd->cookie);
		return -1;
	}

	rc = bnxt_hwrm_cfa_flow_stats_get(bp, flow_node->flow_handle,
					  &flow_node->flow, &stats);
	if (rc)
		return rc;

	tcf_exts_stats_update(tc_flow_cmd->exts, stats.bytes, stats.packets, 0);
	return 0;
}

int bnxt_tc_setup_flower(struct bnxt *bp, u16 src_fid,
			 struct tc_cls_flower_offload *cls_flower)
{
	int rc = 0;

	if (!is_classid_clsact_ingress(cls_flower->common.classid) ||
	    cls_flower->common.chain_index)
		return -EOPNOTSUPP;

	switch (cls_flower->command) {
	case TC_CLSFLOWER_REPLACE:
		rc = bnxt_tc_add_flow(bp, src_fid, cls_flower);
		break;

	case TC_CLSFLOWER_DESTROY:
		rc = bnxt_tc_del_flow(bp, cls_flower);
		break;

	case TC_CLSFLOWER_STATS:
		rc = bnxt_tc_get_flow_stats(bp, cls_flower);
		break;
	}
	return rc;
}

static const struct rhashtable_params bnxt_tc_flow_ht_params = {
	.head_offset = offsetof(struct bnxt_tc_flow_node, node),
	.key_offset = offsetof(struct bnxt_tc_flow_node, cookie),
	.key_len = sizeof(((struct bnxt_tc_flow_node *)0)->cookie),
	.automatic_shrinking = true
};

static const struct rhashtable_params bnxt_tc_l2_ht_params = {
	.head_offset = offsetof(struct bnxt_tc_l2_node, node),
	.key_offset = offsetof(struct bnxt_tc_l2_node, key),
	.key_len = BNXT_TC_L2_KEY_LEN,
	.automatic_shrinking = true
};

/* convert counter width in bits to a mask */
#define mask(width)		((u64)~0 >> (64 - (width)))

int bnxt_init_tc(struct bnxt *bp)
{
	struct bnxt_tc_info *tc_info = &bp->tc_info;
	int rc;

	if (bp->hwrm_spec_code < 0x10800) {
		netdev_warn(bp->dev,
			    "Firmware does not support TC flower offload.\n");
		return -ENOTSUPP;
	}
	mutex_init(&tc_info->lock);

	/* Counter widths are programmed by FW */
	tc_info->bytes_mask = mask(36);
	tc_info->packets_mask = mask(28);

	tc_info->flow_ht_params = bnxt_tc_flow_ht_params;
	rc = rhashtable_init(&tc_info->flow_table, &tc_info->flow_ht_params);
	if (rc)
		return rc;

	tc_info->l2_ht_params = bnxt_tc_l2_ht_params;
	rc = rhashtable_init(&tc_info->l2_table, &tc_info->l2_ht_params);
	if (rc)
		goto destroy_flow_table;

	tc_info->enabled = true;
	bp->dev->hw_features |= NETIF_F_HW_TC;
	bp->dev->features |= NETIF_F_HW_TC;
	return 0;

destroy_flow_table:
	rhashtable_destroy(&tc_info->flow_table);
	return rc;
}

void bnxt_shutdown_tc(struct bnxt *bp)
{
	struct bnxt_tc_info *tc_info = &bp->tc_info;

	if (!tc_info->enabled)
		return;

	rhashtable_destroy(&tc_info->flow_table);
	rhashtable_destroy(&tc_info->l2_table);
}